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ABSTRACT

The reflection of a spherical acoustic wave by a flat impedance
plane is a deceptively simple problem. There is, in fact, no exact
closed-form solution. In practice, approximate methods are employed
to predict the received pressure, the most popular of which relies on
the use of the classical plane wave reflection coefficient, which

oves to be deficient for grazing angles of incidence.

The primary objective of this study was to derive & more exact

. acoustre s
solution to the problem osqpoin:-soutce propagation over a “locally-
reactingf')inpedance or‘ii;bud§‘>plane. This objective was met with

the derivation of an asymptotic series solution. One of the most
important features of this solution is that higher-order terms can be
calculated from preceding terms in the series by the use of recursion
formulae, also derived here. Comparing data predicted from this
solution with that from a numerical integration of the exact
-expression showed the alymptotic'lcries to be extremely accurate, even
for very low values of the parameter kR. As expected, the plane wave
solution often showed major deviations from the exact integral
solution. ;:::>

Aliz;ondnry goal was to incorporate the new propag;tion solution
into a barrier model so that ground reflections in addition to edge
diffraction could be accounted for. Only the first term in the
asymptotic ground propagation solution was used for this purpose, as
it was shown to be sufficiently accurate for many practical cases. 4////)747
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the second phase of this study. The results of preliminary
sensitivity tests reported here are very encouraging, and indicate
that the barrier model should afford a higher degree of accuracy than

available with similar models employing the plane wave reflection

coefficient.
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CHAPTER 1

INTRODUCTION

The problem of spherical wave acoustic propagation over an-

impedance plane continues to attract attention within the scientific

community, although the results of the first major theoretical studies

P&t

on the subject appeared in the literature over thirty years ago. Much

L eSS 44

consideration is also being given to the effects on the sound field
when a diffracting barrier is located between the source and receiver.
At first glance, such strong research interest-—a reliable indication
that these problems are far from “solved"--may be surprising,
especially in view of the fact that many of the underlying
mathematical concepts were well-developed over a century ago in the
field of optics, and further refined in the early 1900°s in the field
- of electromagnetics. However, in response to more contemporary
research needs——particularly those of underwater acoustics as well as
community and aircraft noise control-—-a re-evaluation of previous

results has become necessary.

1.1 Background and Statement of the Problem 4

Figure 1.1 (a) and (b) shows the geometry of the overall problem,

where sound propagates from the source S to the receiver R over a
diffracting plane B on, and perpendicular to, an impedance plane G.
A _ Although delineated for clarity, the impedance plane is actually

infinite in both of its dimensions, while the diffracting plane is

............
......................
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infinite in one dimension and finite in the other. The infinite
extents are rapresented by small arrows in Figure 1.1 (a). Without
loss of gensrality, the impedance plane G can be assumed to be
"horizontal” and therefore referred to as the "ground plane,” while
the diffracting plane B can be assumed "vertical,” of finite "height,”
infinitely "long,” and referred to as the "barrier.” The term
"barrier” is appropriate for the diffracting plane since it will
generally be agsumed in this study, as is usually the case in
practice, that the receiver is in its acoustic "shadow” relative to
the source.

The impedance of the ground plane may take different values on
the source and‘teceiver sides of the barrier (z1 and zz in Figure 1.1
[b]); however, it will be assumed constant on either side. A
fundamental constraint here is that the impedance of the ground plane
does not depend on the angle of the incident acoustic energy, and so

rd

it may be fully described by specifying only its value at normal

1ncidcnc¢.1

The flow of acoustic energy from the source to the receiver may
be regarded as proceeding by way of four distinct paths, shown as rays
with exaggerated spacing in Figure 1.1 (a). Thus, there is (1) a
direct path over the barrier without ground interaction (path SBR in

Figure 1.1 [b]); (11i) a reflected-direct path (SPIBR) for energy that

1 This is the same as saying that the surface will not support
acoustic particle velocities at angles other than normal, or that the
surface is "locally reacting.”™ It is becoaing common to use
"impedance plane” to imply these characteristics.
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is first reflected from the ground on the source side of the barrier
and then diffracted over the barrier to the receiver; (iii) a direct-
reflected path (SBPZR), where the ground reflection is on the receiver
gside of the barrier; and (iv) a reflected-reflected path (SPIBsz) for
energy first reflected from the source-side ground, then diffracted by
the barrier, and finally reflected to the receiver from the receiver-
side ground.

The overall problem of a barrier on a ground plane splits quite
naturally into two parts: propagation over an impedance plane and
diffraction by a bar;ier. The former ig illustrated in Figure 1.2 (a)
and (b). This deceptively simple problem has no closed-form solution.
Complexities derive from the fact that the spherical waves from the
point source are not easily matched to the planar boundary conditions
dictated by the impedance plane.

It'is with regard to this problem that the first major
deficiencies in classical theory became apparent. Older studies
assumed that the incident acoustic energy was in the form of plane
waves, for which the problem is amenable to solution. However, since
plane waves are a fiction of mathematics (implying a source of energy
"infinitely far"” away), the resulting solution becomes inaccurate when
applied to more realistic source-receiver configuratidnl. Moreover,
for angles of incidence that approach grazing, the plane wave theory
is not useful at all. Hence, modern researchers, working on problems

where grazing incidence is the rule, have been forced to take into

account the sphericity of the incident wavefronts.

Rl St e o g
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The second part of the problem under study, the diffraction by
the barrier, is illustrated in Figure 1.3 (a) and (b). The case for
which the barrier extends to infinity in the two directions indicated
by the small arrows (thus, a "half plane” or “semi-infinite" plane)
has received considerable attention in the past. Yet it is clear that
a barrier located on a ground plane as in Figure 1.1 does not fit such
a case, and to use classical results without modification to describe
the diffraction process here would be imprecise. The effects of the
ground plane must be taken into account, and these effects become more
pronounced as the barrier height decreases.

The research to be described in this thesis has retained, and
expanded upon, many of the constructs of classical half-plane
diffraction theory in formulating a model for the overall problem
depicted in Figure 1.1; however, a scheme has been devised for fusing
these constructs with the results of an original, more exact solution
to the ground propagation problem of Figure 1.2. Predictions, based
on this approach, to acoustic propagation problems involving a
diffracting barrier located on a ground plane should result in a

higher degree of accuracy than available from current models.

1.2 Review of Previous Investigations

The composite problem of acoustic propagation over a ground plane
in the presence of a diffracting barrier has been addressed only
recently. But, as mentioned in the preceding section, the components

parts of the problem--nauely, reflection at a plane interface and

. TwIL W&
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diffraction by a half plane-—are classical and have been well-studied

separately.

1.2.1 The Problem of Propagation Over an Impedance Plane

The origins of the formal reflection problem were in the field of
optics. Thomas Young (1773-1829) and Augustin Fresnel (1788-1827)
performed the earliest work on plane waves at perpendicular incidence
to an interface. In the mid-1800”s, Simeon Poisso1, George Green,
Lord Rayleigh, and Herman Helmholtz researched the analogous’
acoustical reflection problem, including oblique incidence.2

Sommerfeld (1909, 1926), working in the field of electro-
magnetics, was the first to solve the spherical-wave reflection
problem, stated as a dipole source on a finitely-conducting earth.
Weyl (1919) re-formulated the problem by modelling the radiation from
a point source located above the earth as a superposition of an
infinite number of elementary plane waves, propagating in different
(complex) directions. In the derivation, each component wave is

reflected according to the classical plane wave laws.3

2 A good discussion of such historical foundations may be found

in Lindsay (1972).

3 Although the final forms of the Sommerfeld and Weyl solutions
are very similar, the former contains, while the latter lacks, an
explicit "surface wave” term. Much controversy followed on this
subject (some of which continues today for the acoustical problem),
the nature of which can be gleaned from Norton (1937; pp. 1193-1195,
pp. 1234-1236) or Stratton (1941, pp. 573-587).

.................
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The Soumerfeld and Weyl integral formulations were not conducive
to numerical calculations or physical insight until Van der Pol (1935)
applied several ingenious substitutions that simplified certain
integrals appearing in the derivations. Norton (1936, 1937) expanded
upon these and other results from Van der Pol and Niessen (1930) and,
with the aid of equations by Wise (1931), generated the most useful
results up to that time. His final expressions for the field, though
approximate, were in terms of the complex complementary error
function, for which numerical values could be calculated. Although
scattered research continued on the electromagnetic reflection
problem, it is fair to say that the inquiry was essentially completed
with Norton“s publicatioms.

The acoustical problem of spherical wave refection was first
attacked by Rudnick (1947), who relied heavily on the electromagnetic
theories of Van der Pol and Norton. He adapted and applied these
results to the problem of determining the sound field from a point
source in the vicinity of a plane interface between two fluid media.
In subsequent papc;s with Lavhead (Lawhead and Rudnick, 195la, 1951b),
Rudnick extended his solution to apply to a point source located above
an impedance plane. Approximations analogous to those made by Norton
also ensbled Rudnick and Lawhead to reduce the integrals appearing in
the Van der Pol formulation to the error function form, from which
they obtsined and plotted numerical results. About the same time,
Ingard (1951) applied Weyl”s method to the impedance plane problem and

obtained results very similar to Rudnick”’s, although the methods of

analysis were quite different.
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More recent theoretical studies have expanded upon the
foundations laid by Rudnick, Lawhead, and Ingard. Paul (1957) studied
the two-media problem, applying the method of steepest descent as
modified by Bands and Wesley (1953), to the Sommerfeld-Rudnick theory
and obtained two asymptotic solutions, one valid near the interface
and the other valid in the region above the source. Wenzel (1974)
analyzed the impedance plane problem via Green”s functions and contour
integration, and obtained integrals to which he applied asymptotic
techniques for various extremes of the surface 1mpedance; The
"surface wave" was attributed much importance by Wenzel and an

explicit term appeared in his solution. Chien and Soroka (1975, 1980)

aprlied Bands” (1966) double saddle point method of integration—the

"method of subtraction of the pole”"-—-to derive an asymptotic

expression for the total field, which contained the complementary
error function. Their solution is explicit through terms in 1/R2 ,
where R is the distance from the source image in the plane to the
receiver. Thomasson (1976, 1977) employed the method of steepest
descent, along with several variable transformations, and also

expressed his solution in terms of the error function. His result is

very similar to the first term of Chien and Soroka“s full solution.
In a subsequent effort (concurrent with the present study), Thomasson
(1980) generated an asymptotic expansion of his exact integral

representation. He also gave recursion relations for the coefficients

4 P* T PN AN 4 |

in this expansion to enable higher-order terms to be derived or, more
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readily, calculated on a digital cbmputer.4

In addition to the principal studies above, there have been many
other investigations—-some theoretical, but most experimental--on the
subject of sound propagation above an impedance plane over the past
decade. The following selected listing may serve as a guide for
further information: Attgnborough (1982); Attenborough, Hayek, and
Lawther (1980); Briquet and Filippi (1977); Butov (1981); Chessell
(1977); Delany and Bazley (1970); Domato (1976a, 1976b); Embleton,
Piercy, and Olson (1976); Filippi and Habault (1978); Habault (1980);
Habault and Filippi (1981); Hayek, Lawther, Kendig and Simowitz
(1978); Hayek, Attemborough, and Lawther (1980); Bayek, Lawther, and
Tate (1980); Lawther, Hayek, Tate, and Nobile (1980); Naghieh and

Hayek (1981); Pao and Evans (1971); Rassmussen (1982); and Van Moorhem
(1975).

1.2.2 The Problem of Diffraction by a Barrier

With its origins in optics and its development in
electromagnetics, the study of wave diffraction around obstacles has
experienced a new surge of interest in the field of acoustics,
primariiy among scientist working in community noise control and
underwater acoustics. The body of literature on the subject of
diffraction is immense, even when limited to studies of the half

4 Although not realized by Thomasson, it has been shown in the

course of chi)present study that Chien and Soroka“s full solution (to
terms in 1/R"‘ could be extracted identically from the first few terms
in Thomasson’s asymptotic solution.
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plane. Thus, only a general survey will be given here.

Thomas Young, in 1800, was the first to critically study the
diffraction problem, but his assertions that the phenomenon was local
to the diffracting edge were rejected by Fresnel in 1815. Instead,
Fresnel employed Huygens” principle and the wave nature of light to
develop a mathematical theory which became the foundation for more
modern research in diffraction. Helmholtz, in 1859, and,
independently, Kirchoff, in 1882, derived their well-known integral
equation relating the field at an arbitrary point in a region to the
value of the field and its derivatives on the bounding, or
diffracting, surface.

Modern diffraction theory has its roots in the research of
Sommerfeld (1896), whose rigorous approach using an extension of image
theory yielded an exact integral expression for the diffraction of a
plane wave by a rigid (or, alternatively, perfectly soft) nalf plane.
Carslaw (1898) continued Sommerfeld”s research on the half pl.. - and
derived a solution for a point source. MacDonald (199%. 91°)
addressed the problem of wedge diffraction--for both a point and a

line source-~using the classical "separation of variables” technique

and expressed his solution as an infinite series of appropriate
eigenfunctions. He showed how this series could be re-written in

integral form and noted, for the particular case when the wedge

>

."] J_‘.‘u_.n_~ A

"collapsed” tc a straight edge, that this integral solution was

<

identical to that given previously by Carslaw. MacDonald went on to

derive an asymptotic form for his exact solution in terms of Fresnel

nat % e
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integrals, a form which is utilized often in modern diffraction
studies.

Redfearn (1940), recognizing “the practical importance of the
problem of reduction of noise at a point due to an unavoidable source
of sound at a second point,” (p. 273) was the first to seek a
simplified, engineering approach and solution to the edge diffraction
problem for the acoustical case. Drawing analogies from heat
conduction theory,S he put Sommerfeld”s solution into a form for a
point source, discarded the second of two integral terms (which, in
fact, represents the source image in the diffracting plane), assumed
the gradient of the field is zero on the faces of the barrier (an
assumption first proposed by Kirchoff), and finally, generated a

solution in terms of a single geometrical parameter. Redfearn”s paper

seems to have attracted little attention at the time of its
publication, but it was re—-discovered in the early 1960°s when it
served as the impetus for nore modern single-number prediction schemes

for attenuation of community noise by barriers.

; In response to the advances in radio communications in the late
g 1940”8 and early 1950°s, researchers began looking for practical means
¢ of obtaining accurate numerical results for the electromagnetic

3

h diffraction problem. Thus, the Weiner-Hopf technique became popular
s (Heins, 1956; Rawlins, 1975; Senior, 1952) and so-called variational
3

g techniques were applied to the problem (Levine & Schwinger, 1948,

3

h'

3

: 5

Q Redfearn makes reference to "Carslaw, “Conduction of Heat”,”
- but gives no citation.

2

.

h

. Wt .
.......




TR — s o T T T g e T e g g T T R g T 2 W T 8T # e T T e

14

1949). The dual-integral method, which yields two integral equations
valid in separate regions of the complex plane, was also employed
(Clemmow, 1966; Jones, 1952). Although applied with success, none of
these methods was especially convenient.

The breskthrough that facilitated practical solutions to many
common diffraction problems was due to Keller (1958, 1962) and his
work on the Geometrical Theory of Diffraction (GTD). Essentially, the
GTD method extends classical geometric acoustics to include not oﬂiy

; reflected sound rays but diffracted rays as well. The mathematical
% description of the diffracted rays is in terms of a "diffraction

% coefficient™ deduced from an approximation to a "canonical”

g diffraction solution. For example, in the treatment of a half plane

Keller used the first term in the asymprotic expansion of Sommerfeld’s

PP
Pl AR

exact plane wave solution to derive the diffraction coefficient. His
resulting GID selution, however, is not valid in the tramsition
regions of the geometric shadow boundaries. Recognizing this

shortcoming, Kouyoumjian and Fathak (1974) incorporated previous

asymptotic results from Pauli (1938) and Oberhettinger (1956) into
Keller”’s Geometrical Theory of Diffraction to generate a uniform
asymptotic solution, in terms of Fresnel integrals, which remained
valid in the transition regions of the shadow boundaries.
Concerning the more complex problem of the half plane with

arbitrary surface impedances, Malyuzhinets (1955, 1962) and

T BT T Al

Malyuzhinets & Tuzhlin (1970) employed generalized Fourier transforms

to obtain the first rigorous solution. However, this was left in

Lo« I Sy

PEANN

ChV I @ qralad)

............
.............................
....................

SR I IR T D T I BN I S I I .
PRSNGSR IR0 TP TORP TR . SO, "W WP UL, SO S Wl il WU, Vil S0 SRAPTLIY U DU WP AP WO DU WA YA W Sy, i al L SO -

f
»
-
,
»
.
.
s,
.
.
]
.
*
.
’
f
4,
.
%
'
.
.
B
»
?
C e
’
P
‘
(PR




— TN IR R

[ o N

15

]

integral form, and special, cumbersome functions were needed for its
evaluation. Recently, Kendig (1977) derived a more useful, closed-
form solution for this problem (as well as for the cases of rigid and
soft half-plane faces--see Kendig & Hayek, 1981) using function
theoretic methods. Kendig”s results were expressed in terms of
Fresnel integrals, which are relatively simple to evaluate
numerically. A comprehensive research effort by the Applied Research
Laboratory of The Pennsylvania State University (Hayek, et al., 1978)
consolidated Keller”s Geometrical Theory of Diffraction, Kouyoumjian“s
and Pathak“s uniform asymptotic results, and Kendig”s diffraction
solution, to derive very accurate, manageable expressions for the
barrier problem. These expressions serve as the basis for the
diffraction work of the present study (see also Hayek, 1982; Lawther &
Hayek, 1978; Lawther et al., 1980; and Hayek & Nobile, 1981).
Excellent tutorial and review material on the subject of
diffraction, including extensive bibliographies may be found in
Pierce (1974); Skudrzyk (1971); Bouwkamp (1954); and Bowman, Senior, &
Uslenghi (1969).

1.2.3 The Combined Problem of Diffraction by a Barrier on a Ground

Plane

Due to the complicated boundary geometry, there is no exact,
closed-form solution to the problem of point source diffraction by a
thin, planar barrier located on a flat, impedance-~covered ground

plane. Neither is there an exact integral form of the solution that
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can be evaluated numerically. Even when both the barrier and the
ground plane are perfectly rigid, an exact solution can only be
formulated (Nobile & Hayek, 198l) in terms of an integral over an
infinite summstion of Mathieu functions, and to extract any numerical
results from this can be most difficult. Lacking, then, a general
solution to which mathematical approximations could be applied, the
method of attack in most studies has been one of making physical
assumptions about the sound field. The fact that these assumptions
differ from one author to another is principally responsible for the
variety of solutions offered in the current literature. Sometimes
very broad and admittedly crude assumptions produce theoretical
predictions that compare favorably with experiments. However, an
increase in accuracy is almost always attainable using fewer, or less
broad, assumptions. The price for this is much more complexity in the
nathematics and often more difficulty in extracting numerical results.
Although there have been many experimental studies on this topic, the
theoretical work is sparse.

Redfearn (1940), mentioned above, spoke in terms of applying his
results to actual barriers erected on the ground, but he proposed no
method for handling the ground reflections. Fehr (1951), on the other

hand, specifically addressed the ground problem, but assumed that the

g ground was perfectly rigid and that both source and receiver lay
g directly on it; consequently, his approach simply became a matter of
-

;ﬁ accounting for the pressure doubling by the ground.

.....
......
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Maekawa (1965, 1968) vas the first to conduct a comprehensive set

P

of experiments with the expressed purpose of obtaining a large data

base for comparison with existing theoriea. He found that his

cald

19

experimental points clustered rather close to Redfearn”s predicted

1
§
"y
ol
N

values, and by fitting a line through the points plotted against the
so-called Fresnel number, Maekawa offered a general design curve for
calculating the attenuation expected from a half-plane barrier.
Maekawa went on to propose a simple scheme based on his empirical
curve to account for the effects of (rigid) ground reflections on the
receiver gside of the barrier (he assumed the source was still directly
on the ground). Rathe (1969) re-phrased Maekawa”s results into a form
that easily yields engineering predictioms. Kurze and Anderson (1971)
- showed that the prediction schemes of Maekawa and Rathe also remain

valid for oblique incidence and additionally proposed an equation that

closely describes the empirical curve.

The first theoretical studies that addressed the problem of a
finite-impedance ground plane and that took into account ground
reflections from the source side of the barrier in addition to those

from the receiver side were dome by Lindblad (1970) and Jonasson

(1972). Lindblad set up a numerical integration of elementary sources
(Helmholtz-Huygens integral approach6) over the infinite plane above
the barrier. The major assumptions in his approach are that all
ground reflections behave in accordance with plane wave theory, and
that the fields above the barrier are precisely what they would be in

6 For example, see Skudrzyk (1971, chap. 23).
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the absence of the diffracting barrier (the so-called "Kirchoff
assumption”). Jonasson assumed that the ground was locally-reacting
and that the barrier was totally absorptive. The latter condition
enabled him to ignore the second term in the MacDonald solution, whiéh
Jonasson employed to describe the diffraction effects. The problem
wvas treated as a simple superposition of four separate half-plane
diffraction problems (see Figure 1.4), vhere the "strengths” of the
ground-reflected rays wera derived from spherical-wave propagation
theory (Ingard, 1951).

Thomasson (1978) correctly pointed out that neither Lindblad”s
nor Jonasson”s solution is valid for small barrier heights. In the
former, the plane-wave reflection theory fails for the near-grazing
rays required to construct the fields above the barrier. 1In the
latter, the inherent assumption that each ray ”seesf a seni-infinite
barrier becomes unsound. Thomasson offered an integral solution that
is more accurate for short (and also, for the first time, finite-~
length) barriers. it involves the application of his own spherical
wave solution (Thomasson, 1976) to the ground reflections and an
integration of the total field over the face of the barrier itse1f7
the ground reflections. However, in order to obtain a solution,
Thomasson was forced to invoke the so-called "Rayleigh” or "physical
optics”™ assumptions, which differ only slightly from the Kirchoff

assumptions.

7 A form of Babinet”s Principle is needed for this; see Bouwkamp

(1954, pp. 51-52).




- WLy T v
R T I T R R T T R S s LT WL T a ¥ AR NSNS |

19

RECEIVER
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\
SOURCE IMAGE \\4

RECEIVER IMAGE

Figure 1.4 Representation of the Overall Problem as a
Superposition of Four Diffraction Paths Using
Source and Receiver Images.
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A recent contribution by Isei (1980; see also Isei, Embleton, &
Piercy, 1980) is very similar to Jonasson”s treatment except that it
allows for an impedance coating on the faces of the barrier.s
However, the impedance condition is handled heuristically by applying
a plane-wave reflection coefficient to the second term in the
MacDonald diffraction solution (the term ignored by Jonasson). Hayek,
et al. (1978), on the other hand, used Kendig”s exact diffraction
solution for the impedance-covered half plane, merged this with
Keller®s GTD, but applied simple plane-wave theory to the ground
reflections. The present study has extended the work of Hayek, et al.
by incorporating into their model an original solution to the ground

propagation problem.

1.3 Scope and Importance of Study

This presentation will begin with a theoretical treatment of the
propagation problem--that is, a description of the field at a point
(receiver) in the half space above an infinite, locally-reacting
impedance plane due to a point source of energy located arbitrarily in
that half space. The method of analysis is original, aithough an
important step early in the derivation is similar to, and was inspired
by, a step initially used by Van der Pol (1935) in his electromagnetic
work and later adapted by Lawhead and Rudnick (1951b) to the

acoustical case. This step, which involves the replacement of an

8 Isei apparently forgot to account for one image term in his
solution, and this has been pointed out by Fujiwara (1980).

N S O
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integrand pole by an equivalent integral, leads to a further integral
! ’ vhich is intractable. Lawhead and Rudnick, following the approach of
- Norton (1936, 1937), made a major approximation so that the integral
3 could be solved. The approach used in the present study avoids such
an approximation. The procedure, which will be described in detail in
chapter II, can be broadly outlined as follows.

First, since the major obstacle with the integral is its

complicated exponential, a transformation of variables is made which

changes the exponential into a more useful form. The denominator of
the transformed integrand is then expanded in a Taylor series about

g! the origin so that a term~by-term integration can be performed. Each
E integral in the resulting series is then solved in terms of parabolic

cylinder functions, which are further expressed in terms of the

complementary error function. 'The final formal result is thus an
asymptotic series (since the assumption of "large kR”9 was necessary
for the term~by-term integration) containing the error function plus
various constants. The series is given in a general form, including
recursion relations for calculating the coefficients. Thus, all of.
the higher-order terms in the asymptotic series can be written out
explicitly and their values can be calculated readily.

The next phase in the study couples the new propagation solution

vith existing half-plane diffraction theory to devise a practical

model for handling the combined barrier-ground plane problem. The

9 Here, k is the familiar propagation constant and R is the
distance from the source image to the receiver.
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developuent of this model is presented in Chapter III.

Numerical data for the ground propagation problem are generated
and plotted in Chapter IV, Section 4.1. Here, the sensitivity of the
results to parameters such as "kR,” ground impedance, and angle of
incidence is explored. For the combined barrier-ground plane problem,
numerical results are presented in Section 4.2, where, in addition to
the above parameters, the dependence on barrier height and diffraction
angle is investigated.

Although the major scientific contribution of this research
effort is the asymptotic series solution for the ground propagation
problem, the model proposed in Chapter III for the combined problem is
felt to be an important engineering contribution; it is more accurate
than either Jonasson”s or Isei”s models because a more exact ground
propagation theory is merged with a more exact diffraction theory.
While it is true that the applicability of the proposed model to short
barriers is questionable (as noted by Thomasson in regard to
Jonasson“s model), a numerical integration approach such as
Thomasson“s (1978)--which indeed might be more accurate for small
barrier heights——is much more time consuming computationally, and
becomes impractical when many source-receiver points must be

analyzed.lo

10 Most highway noise computer prediction schemes——-a common
application of such barrier-ground plane models--treat the flow of
vehicles as a line of many incoherent point sources. As several
receivers are likely to be included in any one scenario, efficient
computations are essential.
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CHAPTER 1II

MATHEMATICAL FORMULATION AND SOLUTION
TO THE PROBLEM OF

POINT SOURCE PROPAGATION OVER AN IMPEDANCE PLANE

2.1 Overview

The exact solution to the problem of plane wave reflection by an

11 Until recently,

impedance plane is rudimentary and well-known.
however, it was customary to simply take the results of the plane wave
derivation and apply them to the point source (spherical wave)
problem. Despite the lack of rigor, the solution so obtained was
consistently confirmed by experiment, except when the sound source was
very close to the reflecting plane. The heuristic derivation of this
“plane-wave solution” to the point source problem can be outlined as
follows.

It is well~known that when a plane wave strikes a flat, perfectly
rigid surface at an angle of inclination ¥ , as shown in Figure 2.1
(a), the resuiting f:leld12 at a point (x,y) can be written as

i[kxcosy - kysinyl + e:L[kxcosw + kysiny]

d(x,y) = e (2.1)

11 See, for example, Morse and Ingard ¢ 768, p. 259).

12 The term "field” formally refers to “"velocity potential,”™ but
since harmonic waves are most likely to be considered here, it can
be taken to mean "pressure” as well.

..................................................
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Figure 2.1 Simple Reflection Problem with Images.

(a) Plane Wave. (b) Spherical Wave
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Here k is the wave number, or propagation constant, and k = 27f/c,
where £ is the frequency and c¢ is the speed of sound in the medium. A
common factor e-iwt, where w=27f and t is time, has been ommitted from
this and the following equations. The first term in Equation (2.1) is
the direct contribution to the field from the source acting alone, and
the second term represents the enhancement of the field due to the
reflecting plane. The total field at the point (x,y) would be
identically expressed if the plane were simply replaced by an "image”
source, as indicated in the figure.

It is also well-known that when sound energy emanating from an
ideal point source S strikes a rigid plane at an angle Y, as shown in

Figure 2.1 (b), the resulting field at the point P is given by

ile ikR2

o) == + = , (2.2)
Ry R,

where, again, the first term is the direct field from the source and
the second term can be thought of as the field from an image source.

Now, if the reflecting plane were not rigid but characterized by
a complex acoustic impedance Z, the plane wave solution becomes

P(x,y) = e

i{kxcosy - kysiny] _ .  i[kxcosy + kysiny] (2.3)
p

Here Rp is the "plane wave reflection coefficient”™ given by

giny - B

R, * Sinp + 8 (2.4)
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in which 8 = pc/Z is the normalized acoustic admittance of the

13

surface. This equation is exact for plane waves; it results from

solving the full boundary value problem. The solution still retains
the form of a direct term plus an image term, but now the "strength”

of the image is no longer unity but Rp.

Since Equation (2.1) transforms into Equation (2.3), then

Equation (2.2) should become

lh ile 1kR2

5 ¥(P) = S—— +R_= (2.5)
q R, P R

4 for the spherical wave case when the rigid plane is replaced by an

impedance plane. This reasoning has been employed by several
researchers to support the use of Equation (2.5) to solve practical
1’ problems involving point sources. There 1s little mathematical basis
for this equation, and it is not surprising, therefore, that when

» acoustic energy from a real source ceases to resemble "plane”

F waves--at grazing incidence, for example-—the solution fails.

E What is needed is a "spherical wave reflection coefficient” for

the point source problem. That is, the solution should take the form

ile ikR2

E o(p) = & +Q , (2.6)
L R Ry

13 The normalization is by the characteristic impedance Pc of the
- medium, where p is the density. The normalized acoustic impedance,

h sometimes called the "specific acoustic impedance,” is ZN = Z/pc and

r hence 8 = 1/zy .

S
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where Q is derived analytically from the formal boundary value

problem. Alternatively, a solution may be sought in the form

eiknl ikR2 Correction

+ R + term . (2.7)
1 P

®(P) = R,

where the correction term approaches zero in the limit when the source
is very far from the boundary but becomes significant when the source

is close to the impedance plane. Both of the above forms of solution

will be derived in this study, but the bractical selection of one form
over the other will depend on the intended applicationm.

Perhaps some physical insight about the problem can be gained
before the theoretical treatment begins. Figure 2.2 (a) and (bf
depicts three elemental segments along a single wavefront of either a
plane wave or a spherical wave, respectively. The rays perpendicular
to the two wavefronts follow the progression of the segments A, B, and
C to their “"striking points™ along the boundary, A“, B“, and C°. Of
course, each segment on the wavefront strikes the boundary at
different times, but this is not important here. Rather, the angle of
incidence with which they strike the boundary is the important factor.
For the plane wave, each elemental portion of the wavefront hits the
boundary at the same angle, but for the spherical wave, this is
clearly not the case. With the assumption of local reactance, each
ray "sees” a surface impedance proportional to its normal component of
particle velocity only. This component, therefore, has the same value

for each ray in Figure 2.2 (a) but different values for each ray in
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(b)

Figure 2.2 Reflection of Elemental Segments of a Wavefront.
(a) Plane Wave. (b) Spherical Wave.
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Figure 2.2 (b). Consequently, the phase change upon reflection is
the same at the points A", B°, and C° for the plane wave but varies
from A" to B” to C° for the spherical wave. The plane wave is
reflected as a plane wave, but the spherical wave loses its symmetry.
When the ground plane is perfectly rigid (or pressure release), the
angle of incidence is immaterial since the phase change is always 180
degrees. Hence, for a rigid plane (or pressure release plane) only,

the spherical symmetry is preserved, and the image method is exs  t.

2.2 Formulation of the Problem

An idealized point source is located at & fixed but arbitrary
position in the half space above a perfectly flat ground plane that
extends to infinity in its two dimensions. The source radiates
acoustic energy into the uniform, quiescent medium that fills the
space above the plane. The resulting field at a point receiver, also
located at an arbitrary position above the plane, is desired. By
definition, the ground plane is "locally reacting;" that is, the value
of the acoustic impedance of the surface facing the source is
independent of the angle of incident energy upon the plane, and it
may, therefore, be fully characterized by its value at normal
incidence. Also, in this ideal case, the proximity of the ground has
no effect on the radiation or "strength"” of the source.

Mathematfcally, the problem stated above can be described by an
inhomogeneous partial differential ("wave") equation subject to

homogeneous, mixed boundary conditions. Allowing only single
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frequency, steady-state excitations will reduce the governing
differential equation to the Helmholtz equation. The genersl solution
to such a boundary value problem comprises a particular solution to
the inhomogeneous differential equation plus a separate solution,
containing unknown coefficients, to the homogeneous differential
equation. The total solution must satisfy the boundary conditioms.
For this reason, it is advantageous to express the particular and
homogeneous parts of the solutionm in coordinates that are easily

matched to the geometry of the bounding surface itself.

2.2.1 The Particular Solution: A Point Source in a Free Field

In the absence of the bounding impedance plane, the problem
reduces to a point source of sound radiating into an unbounded medium.
This problem is most easily described in terms of spherical

coordinates, and the solution is derived in many standard textbooks.

It is simply:

1R
¢(P) = = (2.8)

where R is the distance between the point source and an arbitrary
field point P. Although this uncomplicated form of solution is

appesling, it can not be matched to the planar boundary conditions.

2.2.1.1 The Field from a Point Source in Cartesian Coordinates.

The boundary plane can be specified in Cartesian (x,y,z) coordinates

.......................
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(for example, z=0), and therefore a solution to the Helmholtz equation |

in this system would be more useful. The inhomogeneous equation is
Po(xy,2) + K0(x,y,2) = =47 (8WS(z-2)) , (2.9

where the symbol V2 is the Laplacian operator in rectangular

coordinates,

Vo = 3 +—S+— (2.10)

and the symbol § is the Dirac delta function. The source has been

arbitrarily fixed at the point (0.0.20) and the overall geometry is

shown in Figure 2.3 (a). The solution to Equation (2.9) can most

readily be obtained using Fourier transform methods, where

; ¥(E,n,g) = I” 8(x,y,z) e L(EX MY+ 82) 40404, (2.11)

is defined as the Fourier transform of $(x,y,z), and

3 ®
r; 0,y = 1)3 m o(gn,5) X T aganaz (2.12) |
h 2m> )7/ |

{8 then defined as the inverse Fourier transform.
Now, applying the tramsform to Equation (2.9) and employing the
. following properties of the Fourier integral and the delta function,

respectively:
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Figure 2.3 The Cartesian Space Geometry. (a) Source and
Receiver Coordinates. (b) Propagation Vector

for a Single Elemental Plane Wave with Arbitrary
Direction in the Space.
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J [aic f(:)]e'm dt = -iyE(Y) (2.13)
R .
I G(c-co) f(t)dt = f(co) . (2.14)
the field in transform space becomes
-igz
9(5,n,0) = —5 4"; (2.15)

€ +nl+t-ih

Applying the inverse transformation, Equation (2.12), to this will
yield the acoustic field in the original coordinate system due to the

point source at (0,0,zo). Thus,

®(x,y,2) = 5— dédndz . (2.16)

1 m JIEX + Ny + T(z-2,)]
€ +n*+ g% -k

(2m? 1))

The parameters £, N, and { may be thought of as components of a
propagation vector, in which case the integrand in Equation (2.16)
takes on the form of a plane wave. More precisely, since £, N, and
may have arbitrary and independent values, the integral describes a
superposition of an infinite number of plane waves of different
amplitudes propagating in different directions. Equation (2.16) can

be written in a form that portrays these ideas more clearly:

. ei(i-i{)
O(R) = &(x,y,2z) = 3 JJJ 2 7 4&dndg (2.17)
(2m= 772 A" -k

................
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-> ~ A ~
where the propagation vector A = EiE + nin + :it has a magnitude

A° = E° + n° + %, and the radius vector R-xix+yiy+ (z-zo)tl-z has a

2 2
+ (2=2)” . A single component plane wave

ungnifude R2 - xz +y
with propagation vector K is shown in Figure 2.3 (b) to illustrate

these concepts geometrically. Finally, it should be noted that, with
a few simple transformations, Equation (2.16) can be integrated (for

one treatment, see Strattom, 1951, pp. 577-582) to generate the

familiar point source representation of Equation (2.8).

2.2.1.2 The Field from a Point Source in Cylindrical

Coordinates. The boundary plane could be specified by a single
coordinate surface in cylindrical (r,0,z) as well as Cartesian
coordinates (for example, z=0), and therefore a solution to the
Helmholtz equation in cylindrical coordinates could be conveniently

applied to the boundary conditions. The Helmholtz equation for a

source located at a point z=z along the cylindrical axis takes the

ﬁ form

; 2 2 -2 &(r) G(z-zo)

N V°é(r,z) + k d(r,z) = = . (2.18)

% where the Laplacian operator im cylindrical coordinates is

— .

¢ 2

¢ 2_13 3, .3

E v rx Tt ;:7

- 32 13 2 (2.19)
3r2 r or 322

- Because the source has been located directly on the z-axis of the

coordinate system, there is no azimuthal angle dependence in either of

the preceding equations.

|




The cylindrical symmetry of the problem suggests the use of
Hankel transforms as a method of solution. The Hankel transform and

the inverse Hankel transform are defined, respectively, as
o
0" (\,z) = J o(r,2)r J_(Ar)dr (2.20)
[+
and
o0
®(r,z) = I ¢*(A,z)l Jo(lr)dl . (2.21)
o

where J0 is the Bessel function of order zero. Hankel transforms are

discussed in detail in many texts and one important property they

exhibit is

o
2
——+
Brz
o

Hence, taking the Hankel transform of Equation (2.18) results in

e fr

-53;] ¢(r,z)]r 3, (Ar)dr = 22N . a2

the ordinary differential equation

2

A% 0,0+t 0, + 50" (02 = 2 8z) (2029
: dz
or, defining vZ = A2 - k2 ,
PLIN 2 %
-3 ® (A,2) = Vvd (A,2) = -2 6(z-z°) . (2.24)
dz .
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Now, applying the one~dimensional Fourier transform to the axial

distance z, where

308 = J oA, z) e 152 4. (2.25)

and

8(A,z) = Elij oM, E) o157 4t (2.26)

are defined as the Fourier transform and the inverse Fourier

transform, respectively, Equation (2.24) becomes

-iE2
-3 06 - v OLE) = -2e  © (2.27)

so that the field in (Hankel- and Fourier~) transformed space becomes

-i£z
2e N
(2.28)

€ +vdh

70,6 =

Applying the inverse Fourier transform, Equation (2.26), to this
yields
© 1§(z-z )

* l| e
$ (A,z) == X d§ ’ (2.29
n-“(gz + vz) \

a real integral that can be solved readily using contour integratioy

and residue techniques. Thus,
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-v(z-zo)
% i (z=2)) >0
0 (A, z) = - ' (2.30)
+(z-z ) '
‘ 3 3 (z-2)) <0

!
which, under the constraint Re(V) = Re[(kz-kz) ﬁ > 0, can be writtenl4

-vlz-zol

0*(2) = G . : | (2.31)

Finally, the inverse Hankel transform, Equation (2.21), is applied to
Equation (2.31) to obtain the desired field at the point (r,z) in
cylindrical coordinate space:

ur o Vlzzl

<»(x.-,z)-‘R - 2 ~—— M _(r) dr (2.32)

3
0 -

whera R = J/rz + (2-2
This result is the particular solution to the inhomogeneous
Helmholtz equation. In other words, Equation (2.32) represents a
point source radiating ianto a free field. From fundamental
principles, it is known that functions of the form
.ine Jn[(kz-h2;¥] .1hz » Wwhere h and k are propagation constants and 9§
is the azimuthal angle, represent elementary cylindrical waves, which
are solutions to the homogeneous Helmholtz equation. The point source

14 The vavenumber k is assumed to be complex in general; that is,

the mediun i3 assumed to possess a small, but finite, amount of
dissipation.
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in Equation (2.32) thus represents an infinite, weighted sum of these

elementary cylindrical waves propagating symmetrically about the z-

axis (n=0). Sommerfeld (1909) was the first to derive this result,
and the representation of Equation (2.32) is sometimes called the

”Sbmmerfeld point source.”
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2.2.2 Total Solution: Effects of the Boundary

Each of the representations of a point source in free
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space——equation (2.16) in terms of plane waves and Equation (2.32) in

terms of cylindrical waves——is a solution to the non—homogeneous
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Helmholtz equation. When a boundary such as the impedance ground
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plane is present, a second term must be added to the free—space
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solution to account for reflections. The total field can be written
as °to: = °i + °r » where the components may be termed the "incident
field” and the "reflected field," respectively. Because the

eikR/R

particular solution— °i = » Or either of its elementary wave

expansions—is unique, the reflected term @r can not alsc be a
solution to the nou-homogeneéus equation, but instead satisfies the

homogeneous Helmholtz equation

RO P VRO (D

v20(r,z) + kzor(r,z) -0 . (2.33)

LA S " ”
N Y SERNCALG

As such, the solution for the reflected field ¢r will contain

arbitrary constants which can be determined by applying the boundary

R
-

conditions.
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2.2.2.1 Total Integral Solution via Elementary Wave Functionms.

The free-space solutions developed in the previous sections also
satisfy the the homogeneous Equation (2.33) at all points except at
the source itself (R=0). The elementary plane and cylindrical waves
are therefore eigenfunctions of the problem, and the reflected field
can be constructed from an infinite summation (integral) of these
eigenfunctions, with arbitrary weighting functions to be determined
from the boundary conditions.

The expansion of the reflected field in terms of elementary plane
waves was the approach used by Weyl (1919) for the electromagnetic
problem and later adopted by Ingard (1951) for the acoustic case. By

2

1
defining vy = [52 +n° - kz]1 with Re Y >0, Equation (2.16) can be

transformed into

® ® iz(z-z )
1 i
d(x,y,2) = ? J e (&x + ny) dEan (Ci )z = iY)dc < (2.34)

Using residue methods for the {-integration, this can be reduced to

. w -le-zol

¥(x,y,2) = 3= )( 9—-——Y-—— LB+ V) gran (2.35)

=00

In this form, the elementary plane waves are decaying exponentially

with z, and Weyl termed these “"inhomogeneous" plane waves. Noting

e A me o At B bal o
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2 + (1Y)2 = kz, the propagation constant k can be written

that £2 + n
as a vector with components i = Etx + nIy + (iy)Iz . This suggests
the transformations iy = kcosd, & = (ksina)cosf, and n = (ksina)sing.
The resulting field at the point (x,y,z), then, from the point source

located at z-zO can be written as

*(x,y,2) =
/2-1= 21 ik[xsinacossd-ysinasine4-[z-z |cosal (2.36)

ik o

= e * sinadadB

m o
The final step is to assume that the reflected field "originates”™ from

the image point at z = -z, and thus

Qr(x,y,z) =
ik m/2-1= 2 ik[xsinacosB-Pysinasin84-|z+z°|cosa] (2.37)
Er fr(a)e * sinadadBf .
ﬂ o
where the unknown function frax) must be determined from the boundary
conditions. For the present case of an impedance boundary, fr(a) is
simply the plane wave reflection coefficient given by Equation (2.4).
The expansion of the reflected field in terms of elementary
cylindrical waves was the approach used by Sommerfeld (1909) and Van
der Pol (1935) for the electromagnetic problem, and later adapted by
Rudnick (1947) to the acoustical case. To express the reflected field
in integral form, the results of Section 2.2.1.2 are used,

specifically Equation (2.32). Assuming the reflected field originates

from an image point source at z==z, the field can thus be written as
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@ —v(z-zo)

o(r,z) = j g, (N € . A (Ar) dA. (2.38)
(o]

where the unknown function gr(v) must be determined from the boundary

conditions.
The boundary conditions for a locally reacting surface is that
the ratio of the pressure p to the normal component of the velocity va

equals the acoustic impedance of the surface. That is,

p(r,2z) R0 ., . (2.39)
v (r,z v_(r,0)
n n
z=0

Since the pressure is related to the velocity potential by the
fundamental equation p = pd®/d3t, or p = -iwpd for harmonic waves, and

since v_ = -39/3z, the boundary condition can be expressed in the form

32%:—”- + 1kBO(r,0) = 0 . (2.40)

Here B#pc/Z is the normalized acoustic admittance of the surface.
When the total solution ¢tot = ¢i + Qr is substituted into

Equation (2.40), the unknown function gr(X)can be determined to be

v + ik8
8, M) =5 Tkg - (2.41)

Therefore, the integral form of the total solution is

et g ‘ - . .. . L. g PRI PRIV Y
L. PP YT Ve b . CIp > . o 2l " Py el P




o e auge Shase Shr Nk Jaegr Y™ Muraa R e M~ e e~ I a3 —— T — L adt aente Lonth aaut s Ml aatt Maulh snan sadt gl oS Uahiih oaai M Mt Nl

42

-v(z+z°)

E)+-ik6 e

e - M _(Ar) dx . (2.42)

o

eikR
o(r,z) = R + J
o

2.2.2.2 Total Integral Solution via Hankel Transforms. The

result just obtained can be derived in a more straighforward manner
using Hankel transforms. The total solution to'the transformed
Helmholtz equation (2.24) comprises the particular solution,

Equation (2.30), plus a homogeneous solution containing two arbitrary
constants to be determined from two boundary conditions. Thus, the
field in transform space takes the form

-vlz-zol

o' (A,2) = A eVF + B &7+ E— (2.43) |

.

The first boundary condition that must be met is the Sommerfeld
radiation condition specifying that the field must vanish as z .
Because the constraint Re(v)>0 has already been imposed, the constant

B must be set equal to zero. The second boundary condition is that

dictated by the local reaction assumption, namely, Equation (2.40).

a2
s
S T R

Applying the Hankel transform, Equation (2.20) to the boundary

condition yields

AR PN\ 0N

e
PEEINU AR

*
-&%ﬂl + 1kB0*(1,0) = 0 . (2.44)

2 -

*
Substituting ®(A,z) from Equation (2.43) into Equation (2.44) and

A\

T -
e A P DEAREED
SENAVS I DOSAENOL

writing the absolute value quantity as [z-zol - (zo-z) for z+0 yields

the desired value of the constant:

KN P G
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P S T R

-vVz
: + 1k °
. AQd) = [:: = ikg] & " . (2.45)

The solution for the field in transform space, then, becomes

- -vlz-
v(z+z ) vz ‘ol

0" (\,2) = [31' i:g] e . (2.46)

. Finally, taking the inverse Hankel transform, Equation (2.21), of this

expression, yields the integral form of the total solution. Hence,

© -\)Iz-zol ol -\)(z+zo)
d(r,z) = S A (Ar) dA+J B‘:Kg} e - M (Ar) dx
o o
(2.47)
L -v(z+z )
- ikR o
'eT*‘I I}’ s ﬁg & ——— A3, (Ar) A

Q

which is identical to the previous results of Equation (2.42)

2.3 Derivation of the Asymptotic Series Solution

The integral in the exact solution, Equation (2.47), appears to
be intractable due to the presence of a simple pole at V =
(Az-kz)li = +ikf and branch points at A= tk, Virtually all of the

researchers who have addressed the spherical wave propagation problem

Y e roTrrry

N over the past century have been faced with this, or a very similar,

integral, and all have necessarily resorted to approximation methods

Ty T ey
.
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BN AT A

e

for its evaluation. Those methods based on an asymptotic approach, in

which a critical parameter such as "kR” is assumed to be large, have

! proven to be the most accurate and to provide the most useful results.

In these, the real axis path of integration is continued into a
contour in the complex plane that invariably must be deformed around
the branch point and branch cut. It is to the resuting branch line
integral that the asymptotic technique--usually the "method of
steepest descents"-—is applied. In addition, proper attention is paid
to the simple pole, which may or may not be enclosed by the final
contour depending on the specific nature of the problem.

The approach in this study is different. The pole is replaced at
the outset by an integral representation, and the branch line
integration is avoided through an appropriate transformation of
variagbles. However, the "asymptotic” assumption is still necessary,
but it is invoked later in the development when the integral is
expanded into a Taylor series. The final form of solution will be an
asymptotic series, for which the coefficients may be calculated by

recursion formulae.

2.3.1 Replacement of the Pole

By re-writing (V+Y)/(V=Y) = 1 + 2Y/(V-Y), the final solution
given in Equation (2.47) for the field at the point (r,z) can be

expressed as

......
P IACN TP WS G S YL Sl G S S Wit S . =

PRI R VAR TERE W P YT S S |
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ile .1kR2 © -v(z+z°)
o(r,z) = eR + eRZ + 2y J -e(—v_—YTv—- AJO(Xr) dA (2.48)
1
o

in which y=ikB, Rl is the distance from the source at (O,zo) to the
point (r,z), and R2 is the distance from the image point at (0,-z°) to

the point (r,z). The geometry of the problem is f{llustrated in Figure

2.4,

From the fact that 1l/p = I“ e Ptar  for Re(p)>0, the pole in

o
the integrand of Equation (2.48) can be transformed asls

-(v = Y)n an

-(_\)_%—Y-)-.Je Re [v - v] > 0 (2.49)
(]

However, it turns out tnat the constraint Re(V-Y)>0 is not very

16

convenient, and a better transformation would be

_ 1 . J TV =N o Re (4w - Y] >0 (2.50)
o

so that

(T:I—Y;'- L I VTN etV -] 0 . (2.51)
o

15 This step is based on a similar one first used by Van der Pol
(1935) and later adopted by Lawhead and Rudnick (1951).

16 The constraint translates into Re(v) + kIm(B) > 0. Although
Re(v)>0, the imaginary part of 8 may be positive or negative, and the
condition Re(v=y)>0 can not be guaranteed.

...................
--------------
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RECEIVER
(r,2)

SOURCE
0,z))

Figure 2.4 Geometry of the Propagation Problem in
Cylindrical Coordinates. Source-Receiver
Distance R,, Image-Receiver Distance R,,
Reflection angle ¥, and Ground Admittance B.
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Writing v = v + 1V, and Y = :I.k(Bt + 181) - -kﬁi + 1k3r, where the
subscripts "r" and "i" indicate "real” or "imaginary" parts,

respectively, then the constraint Re[i(V-Y)] > O tramslates into

(-vi + kBr) > 0. Because the real part of the impedance Z=R+iX for

PR AP AN P g TV P L RL RIS

physical materials must be positive, then Br = R/(R2+x2) must also be
positive. Thus, in order to satisfy the constraint in Equation
(2.51), it 1is sufficient that Vi be negative. That this is indeed the
case requires a closer look at the parameter V.

Assuming that the medium is not ideally lossless, the wavenumber
k may be written as a complex quantity k = kr + iki, and because
eikR/R must decay for large R, the imaginary part ki must be positive.
Furthermore, if the symbol "/ " is adapted here to indicate the

positive real square root (often called the "principal root“), then

42 2 2.
Vs -k = «’ZXZ;E3+k1) - i(Zktki). The real part of the

quantity under the radical can be positive or negative, but the

imaginary part will always be negative. Hence, the root must lie in

the fourth quadrant; that is, v <0.17

i
The replacement of the pole via Equation (2.51) is thus valid for

3
f
1
‘.
b

Liae 27 e

general impedances (springlike or masslike), and when the result is

substituted into Equation (2.48), the integral term becomes

o o

17 This can also be shown by considering the assumed time

. dependence. Thus,

.v|z-z°|e-1wt - .-vrlz-zole(-vi|z-z°|-wt) ;

therefore, to ensure outward propagation, vi<o.
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[--X--)
=V(h+in) i
1, = 21y ” [‘ —— MJ_(Ar) d/\] e an (2.52)
[o]

o

where h"(z+zo). The term in brackets resembles the Sommerfeld

representation for a "point source,” Equation (2.32), and therefore

[--]
KR’
I, = 21y I [en. ] el 4n (2.53)
[o]

where

R' = V" 4+ (htin)” = /rf+ h2 + 2ihn - r17 (2.54)

From Figure 2.4 it can be seen that h/l?.2 = giny and r2+h2-R§, thus

3
2
R' = R, 1*'2%1{'8_@"2“33 (2.55)

2 Rz

where Re(R”) > O.

The integral in Equation (2.53) now takes the form

b
1kR 2
e 2[[1 + ZiRn siny _ gﬂ + iYTI]
2 z L dn (2.56)

®
Il - ZiYJ
Q

+ Zinksinﬂ - _ré

2 R2
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@ 1kR,[(1 - g2 + 21f siuw);i + 1BE]

I,=-2k8 e » dE (2.57)
o)

(1 - £% + 24€ siny)

where the transformation E-nlnz has been applied. Although the pole
has been "removed” from Il' the integral is still cumbersome, and a
transformation of variables will now be made in order to simplify the

exponential term.

2.3.2 Variable Tramsformation

The functional form of a single variable transformation§ =£(t) on

a contour integral is

[ ® *J £lE(e)] $548) g (2.58)
CE Ct

or, more specific to the case at hand,

J £ r) ag +J SEEO) pree) 92l g . (2.59)
Ce €
where c5 and C, are arbitrary contours in complex §-gpace or complex
t-space, respectively.

The exponential in the field solution, Equation (2.57), can be

put into a simpler form by the variable transformation
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/1 - EZ + 21§ sinw‘+ igg = -(t:2 + 2Bt +C) . (2.60)

With this transformation, the original real axis path 0<f<owill in
general become a contour in the complex t-plane.

To determine the values of the coefficients B and C, two
constraints must be placed on the transformation. The first is that
the transformed contour should start at the origin; that is, t(£=0)=0.
This condition immediately fixes the value C=—1 (again, the root on
the left hand side of Equation [2.60] is taken so that the real part
is positive). The second constraint on the transformation is less
trivial. Of course, if the transforumation were matched at any other
point t(Eo)-to, the unknown coefficient B could be determined.
However, the most judicious choice for this matching point is the so-

called "saddle point” of the original integrand.

2.3.2.1 Matching Transformation at the Saddle Point. The point

at which the derivative £°(§)=0 is called the "saddle point” and is a
fundamentally important quantity in the asymptotic technique of
“saddle point integration,” also called the "method of steepest
descent.” At the saddle point, the integrand takes its maximum value
and falls off rapidly to either side in the directions of "steepest
descent.” The power of this method lies in the fact that if the
integration 18 performed along the path of steepest descent, most of
the contribution to the integral comes from the immediate vicinity of

the saddle point.

The saddle point EO of the integrand in Equation (2.57) satisfies
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: d 2 iy

o (1(1 - £ + 24 siny)* + 1B} =0 , (2.61)
».: . EE

, and the saddle point t, for Equation (2.57) satisfies

. o i[-t?2 - 28c+1] =0 , (2.62)

where the parameter a in Equation (2.59) has been set equal to kRz.

Therefore, solving the previous two equations, the saddle points are

found to be

U

O 00

£ =1 siny + if cosy
° A - g2 (2.63)

t =-B .

When these values are substituted back into the transformation,

Equation (2.60), the coefficient B can be determined. Thus,

e D

: B2 = -1 - B siny + /1 - 8% cosy (2.64)
Y

g or,

, B = ti(lL + 8 siny - V1 - 8% cosy)? . (2.65)
]

: .

:
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Note that at this point in the derivation there is nothing to govern

the selection of the root in Equation (2.65).

2.3.2.2 The Transformation of the Integral. The transformation

of the exponential factor is complete; that is,

1R, [ (1- £7 + 21€ sinv)® + 1BE] -1kR2[:2 + 2Bt - 1]
e =e (2.66)

With reference to Equation (2.59), the next step in the transformation
involves the function F(£), which is defined here as

F(E) = 1 (2.67)

A - % + 24 siny

In order to find F[g(t)] where

FIE(t)] = —L_ - (2.68)
A - 2(t) + 21£(t) sinv

the quantity £ must be expressed as a function of t. In a

straightforward manner, Equation (2.60) can be solved for &(t) as

E(t) = —L—— {8(-t? - 2Bt + 1) + siny
a-8h
(2.69)

t[(-t2 - 2Bt + 1 + sind))2 - vl - 82 cosW]%}

The quantity in the square bracket can be factored so that
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i 2

E(e) = —_— {B(-t + 2Bt + 1) + siny

(1 -89 (2.70)
2
- B + siny _t~ _ 2Bt
(t + B) [ 3 ] 1 1 3 }
where

H=1+R8 sinp + /1 - BZ cosy (2.71)

and where the sign of the root in Equation (2.69) had been selected to
make £(t=0)=0, as required. As a check on the transformation in
Equation (2.70), it is easy to confirm that E(to)-go. Now when &(t)
from Equation (2.70) is substituted into Equation (2.68), the

integrand function F[&(t)] can be determined. Hence,

2
(_B)
F(E(t)] = (2.72)
[a(e) + B stay] - B(c + B) (B2 ATey

in which the following shorthand notations have been introduced:

a(e) = -tz - 2Bt +1
(2.73)

e? _ 28t

MOEEEEE —E!

The final step in the transformation of the Iintegral is to derive

an expression for d§(t)/dt. This is effected by differentiating the

expression for £(t) in Equation (2.70), and therefore

- PSS - - Y FERP T S G WP Ry | LA RPN PSP S
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| ~8(t+B) [8—*,—&?1“] ATET+ [a(t) +8 siny]
3 dgit) - i > (2.74)
- + siny
(l S) {:B BS n] m
The product F[g(t)]dE(t)/dt, then, results in the relatively simple
expression
24 '
FlE(r)] 4548 . 5 : (2.75)
¥ et A BE
s H H
With the transformation thus complete, the original integral of
Equation (2.57) can be written
ikR 2
Eot —41k@Be 2 -ikRz[t + 2Bt]
I. — I = dt (2.76)

1 2~ (8 + siny) I S
C [ 2Bt
t /1 - T -

H

with H defined in Equation (2.71) and B in Equation (2.65). The
integral is taken over the path Ct’ the transformed contour in the t-

plane. The root in the expression for B will be fixed by the choice

of this integration path.

2.3.2.3 The Path of Integration in the t-plane. As the value of

£ goes from O to +® along the real axis, the transformed variable t
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will trace out a path in the complex t-plane. The transformation,
Equation (2.60), can be readily solved for t(£), which will describe
this path; thus,

2 )

t(g) = =B = [B” - V(§)] (2.77)

where
2 A

V(E) = -1 + /1 - £° + 24sinyE + 1BE . (2.78)
The constraint t(g=0) = 0, or

£(0) = -B * [B%]? (2.79)
dictates the selection of the root in Equation (2.77).

The parameter B=+i(l + Bsiny - /{-B cosw)k can be neglected in
comparison with V(§) for £+R, where R is some large, positive
constant. Thus, from Equation (2.77),

t(§ = R?J = [l - /i - R2 + 2iRsiny - iBR]%
R0
= t[~ /R? - 1(8, + 18,) R] (2.80)

= t[BiR - i(R + BrR)]%

The imaginary part of the quantity inside the brackets is always

negative, but the real part can be negative or positive. Thus, if
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Bi<°’ the quantity in brackets 1s confined to the third quadrant, and
the two roots will lie in the seventh and third octants. If Bi>0, the
bracketed term is in the fourth quadrant, and therefore the two roots
will lie in the eighth and fourth octants. These relationships are
illustrated in Figure 2.5 (a).

The octants that have been identified represent potential closure
regions for the integration contour in the complex t-plane. That is,
the original path along the real axis will connect via a circular arc
of large radius to the point t(R) expressed in Equation (2.80).
Refering to Figure 2.5 (a), it is apparent that the most convenient
choice for closure is the eigth cctant for 81>0 and the seventh octant
for Bi<0‘ In either case, the final closed contour will enclose a
region entirely within the fourth quadrant, as shown in Figure 2.5
(b). Assuming (for the moment) that no poles or branch points lie
within the enclosed region, the following relations hold from

fundamental principles:

I +I _Jf .0 (2.81)
c .

where C1 is a path along the real axis; C_ is a circular arc of

R

arbitrarily large radius R; and Ct is the actual transformed contour
(from the original real £-axis). So long as the integral over CR
vanishes, the original real-axis integration in terms of £ , Equation

(2.57), can again be expressed as a real-axis integration in terms of

t. That is,




LSt g e s el Bagl S SuduTae g arab e e i R T A A RO A A R P U S

Im|t]
, } ] [-_llg::
ﬂi>0 | 2
f.-11R2
-]zl
i
B> 0| Re Tt]
[ 1112
+-]l
B, <0
= Y
1
(a)
‘rIm (t]
G
——r—— -> Re [t]
c
t
Cr
” (b)
« Figure 2.5 Complex t-plane Showing (a) Each of Two Values for
the Square Root Function for Imaginary Part of the
! Admittance Positive of Negative; and (b) a Typical
, Closed Contour in the Fourth Quadrant.
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Em t=w
I dg = J dt = I dt = I de . (2.82)
E=o0 Cc C1 t=o0

As this is the desired result, the final step in the transformation is
to ensure that the integral over CR vanishes as R gets large.

The exponent in Equation (2.76) can be written in terms of its

real and imaginary parts for t-tr+1ti and B-Br-H.B1 8818

2 2
-1ikR, (t” + 2Bt) -1kR2[(tr+iti) +2(Br+13i)(:r+ici)] » (2.83)
where the real part

2
Re[—ikRz(t + 2Bt)] = 2kR trti + 2kR Brti + ZkRZBitr (2.84)

2 2

must be less than zero. First, for path CR “"gtarting” on the real

:% axis, ti-O, so that Re[-ikRz(t2+23t)] = ZkRZBitr. Hence, to ensure
convergence here, B1 must be negative. Furthermore, for all other

points along CR off the real axis, the first term on the right hand
side of Equation (2.84) is sufficiently large to ensure that the

expounent is negative regardless of the sign of Br. Consequently, the

De P DOCOCYOWE AR

proper root for B is now fixed, and Equation (2.65) may be re-written

to enforce the constraint B 1<° as

4
PR

MR o i
.

’

-

|

18 The wavenumber k, which had been assumed complex for physical
purposes, can here be assumed real for mathematical purposes. 1In the
alternative, the small positive imaginary part k, could be made
arbitrarily small so that k = kr + 1k1'—* kr in the limit.
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B = -1 /{ + Bsiny - V1 - B  cosy ; Rev >0 (2.85)
and the transformed path, Equation (2.77) cam be specified as

€€ = B - AZ-vE) ; InY >0 (2.86)

where the symbol v indicates that the root is to be taken to yield a

positive imaginary part.

2.3.3 The Branch Points and Branch Cuts

The simple pole that was present in the original integral (see
Equation [2.48]) does not appear in the transformed integral of
Equation (2.76); however, due to the multivalued nature of the
denominator, a branch point is still present. It can be shown that
the presence of a branch cut arising from this point will not affect
the integration directly since the contour can be closed without
crossing any portion of the cut. But, as will be pointed out later,
the branch point is also a singularity of the integrand and, as such,
will 1limit the radius of convergence of the Taylor series expansion of
the denominator.

The branch points are simply the roots of the equation

2
t 2Bt
- = i +1=90 (2.87)

where, again,

..............
..................
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H=1+ Bsiny + /1 - 82 cosy ‘ (2.88)

Therefore, the branch points are

cl--B:/’zT.‘ ; RevV >0 (2.89)
2

where A= /1 - 82 cosy .

The branch cuts associated with these points have already been chosen,
implicitly. That is, the specification that the root in the integral
of Equation (2.76) be taken to yield a positive real part has
essentially defined lines in the t-plane, across which the value of
the root changes in sign. The equa;ion describing these branch lines
can be derived in a relatively straightforward manner.

In the complex z-plane, the negative real axis acts as the branch
cut for the constraint Re(z)k>0; that is, the equation describing the

branch line is Ziine = P> for p20. In direct analogy, the constraint

2
Re[- -"H— - _2:_: +1%>0 (2.90)

translates into the defining equation for the branch line

2
--t—--& B - . >
= o +1‘| p ; p20 . (2.91)
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Q Solving this for t, gives the equation for the branch line in the t-
i

i plane. Thus,

v

: t14pe = B % vZA + pE ; p20 . (2.92)

+

It can be shown that the branch lines described by this equation
usually lie wholly within the first, second, or third quadrants of the
t-plane, and consequently do not interfere with the closed integration
contour. For the rather unrealistic case for which Bi>0,|B|>>1, and
siny+0, one of the branch points can fall in the fourth quadrant;
however, the corresponding cut extends downward, and the closed
contour can be perturbed-—— if necessary——to avoid crossing it.

The transformed path, Equation (2.86), along with the branch
cuts, Equation (2.92), are plotted in Figure 2.6 (a) and (b) for two
representative combinations of admittance B and grazing angle Y. The
contours are presented here only to add insight into the problem, a;

the final integration need only be performed over the positive real

axis.

2.3.4 The Taylor Series Expansion

The integral in Equation (2.76) can be re-written now as a real

£ integral. Thus, disregarding the constant multiplier,
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0 Im(t)
y = 3.7 )
Z = (1.3, -2.1) 5t
B = 0.2, 0.3
2
-5+
(a)
y = 0 im(t
Zy = (o 45 0.30) s}
B = (1.53, -1.02
-5 M
+= Re(t)
W2
-54

Figure 2.6 Complex t-plane Showing Branch Cuts and the
Transformed Contour for two--(a) and (b)=--
Representative Cases for ZN’ Y, and B.
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o -1kR2[:2+23c]
I, = | < dt (2.93)

3 \
o //r'— Ei _ 2Bt
H

H

The square root function in the integrand is still the obstacle
preventing the evaluation of this integral, so the radical will be
removed by expanding it into u Taylor series about the origin. It is
possible to avoid computing the Aerivativea normally required by
Taylor“s formula by noting that the given function is already in the

b

standard form (l+u) ° where u-(:z/u + 2Bt/H). From the well-known

result

4, _ 1. ,32_5 3,35 &
(1 +u) 1 7 u+t g Y ig Y +i8 4 - (2.94)

the expansion for the integral factor can be translated to be

2
1 _+[§] e+ 3B 4 L] 2
YA
H H
3 2 4
NESOREY R ETIEL R O
26 2H"] [8H®  4H 8H
[- -]
n
ZTnt . (2.95)
n=0

A general form for the Taylor coefficients Tn can also be obtained as

follows:

.......

.........
.......

-
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[n-2k]20 [ _ _
T = L Pk a 46 Rk 2.96
D (p)" Z K n-k |H (2.96)
n=0

where the quantity [n;k] is the binomial coefficient; the parameter G

is given by
G=-B2=1+Bsiny - v - B° cosy (2.97)

and a 1s expressed by the following recursion relation:

a, = 1
- .(____llfzm- ] a_, - (2.98)

The notation on the summation symbol in Equation (2.96) indicates that
k increases in integer steps until the expression (n-2k)20 is no
longer satisfied (for example, if n=6 or n=7, then k=0,1,2,3). For
reference, the values of the binomial coefficient and am required for

an expansion through t6 are given as follows:
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' 5 -
"1 ) - e -
a, = -1/2 Eﬂ -1
a, = 3/8 [g] - 6
N (g] - 1o (2.99)

a, = 35/128 [g] = 10
ag = -63/256 [g] = 15
ag = 231/103 :g] = 20

g

As with any Taylor series, the expansion in Equation (2.95) is
absolutely and uniformly convergent within any circular region in the
complex plane about the expansion point (t=0 in this case) that does
not contain a singularity. The circle of convergence for Equatiom

(2.95) is thus limited by one of the branch points t, or t, defined in

1 2

Equation (2.89). Precisely, if ltal represents the smaller of the
magnitudes |t1| and |t2|, then the radius of convergence for the
Taylor series will be |ta|. Of course, for values of t such tha:
|t|>|t.|, the function on the left hand side of Equation (2.95) can no

longer be equated to the series on the right, because the latter may

diverge.
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2.3.5 The Term-by-Term Integration

The integral 13 in Equation (2.93) can now be re-written as a sum

of two convergent integrals

= L "
13 I3 + 13

™ ©  -1kR,(t? +28t)

J -m&z(cz +2Bt)
- e

.

x
ZT t®| de+ J £ de
. n 2
o n=o0 fta| 4 _ £ _ 2Bt

H H

(2.100)

It should be emphasized, here, that no mathematical approximations
have been made thus far in the derivatfion and so the exact expression

for the field, Equation (2.47), can be written

ile ikR2 ikR2
e _ LikRBBe I , (2.101)

R (B + siny) 3

with 13 given above.

To insure accuracy in the approximations to be made, the relative
magnitudes of the two integral terms in Equation (2.100) should be
investigated. If the second integral can be neglected, then a term—-
by-term integration on the first integral would accurately represent
the field. It is sufficient to examine first the behavior of the

integrand

WP IR W S UL VR WP Y ST P P M .
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-ikR2 (t:2 + 2Bt)

u(e) = = . (2.102)
[ £ 2
H H

Plotted in Figure 2.7 (a), (b), and (c) are the real and imaginary
parts of the function U(t) versus t for three values of the parameter
kRz. Here, B and y are fixed at the representative values
B=(0.055,~0.062) and $=3.8°. The value of |t_| for this B and ¥ 1s
marked by a vertical bar on the t-axis and indicates the limit for t
beyond which the Taylor series diverges. It is apparent from

Figure 2.7 that as kR, increases a greater and greater contribution to
the integral comes from the region in which the Taylor series
converges. In other words, for large kRz, the integral from t=0 to
t=o in Equation (2.93) can be replaced by just the first integral in
Equation (2.100). The condition “large kRz" can often be taken in a
relaxed sense. In the particular case shown 1f Figure 2.7 (b), for
instance, the relatively modest value of kR2-13.5 shows a very minor
contribution for tzlta|.

There is one final step to be taken before the integral in
Equation (2.93) can be expressed in a form suitable for term-by-term
integration. This involves replacing the denominator in the second
integral of Equation (2.100) by the Taylor series expansion, and thus

writing




Re (U]
———— Im[ U]

Ut
1.0
0.5+
0 ‘\
.,
05T N
-1.0+
v = 3.8°
Zy= 6.0, 8.0
B = (.05, -.062)

Figure 2.7 Real and Imaginary Parts of Integrand Function U(t)
vs. t for Zys Vs and B, Fixed. (a) kR2 = 2.5
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| ———— Re [Ut]
===~ Im[uw]
Ut f

N= 8.0, 9.0
= (.055, -.062)

™ N
]

Figure 2.7 Real and Imaginary Parts of Integrand Function U(t)
vg. t for ZN’ Y, and 8 TFixed. (b) kRz = 13.5.
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—— Refum]
-—=- Im[Uth]

R, = 33.7

N4

Wt
F-S

—
2
<

Z (80 9.0)
5 (.055, -.062)

Figure 2.7 Real and Imaginary Parts of Integrand Function U(t)
vs. t for ZN’ Y, and 8 Fixed. (c) kR2 = 33,7,
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: |tal -1mz(c2 + 2Bt) :
" I, = J e [Z'rnt] dt
3 o
s (2.103)
! © 2
N -ikRz(t + 2Bt) I
: ] o (£ e
h |ta]
! or
[
3
% 00 oo 2
ﬁ ~1kR, (t° + 2Bt)
g I, = T Jt“ e dt . (2.104)
5 4 n
. n=0
ﬁ Clearly, from the discussion in the previous section, the second
: integral in Equation (2.103) does not equal the second integral in
Equation (2.100) and so IA‘# 13. However, a relationship does exist
. between the two integrals, namely that 14 given by Equation (2.104) is

an asymptotic expansion (sometimes called a "semi-convergent”

expansion) of the integral I.,. An asymptotic expansion converges up
3

to a point, and then diverges. That I4 represents an asymptotic
expansion of 13 is proven in principle in several classical
mathematics text:s19 and may be explained heuristically here as
follows.

The second series of integrals on the right hand side of Equation

(2.103) clearly diverges since it involves the Taylor series outside

of its circle of convergence, but the first series converges. The

19 The necessary tools are Watson”s lemma and some theorems on
Laplace transforms. See, for example, Copson, 1935, p. 218.
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rates of convergence and divergence are controlled by the parameter
kR2 in the exponent: the larger kRZ, the more rapid the convergence
of the first series, and the slower the divergence of the second.

However, for any fixed value of kRz, the sum of the two integral

series behaves asymptotically since it will always converge up to a

certain number of terms, at which point the second series “"takes over"”

f- and causes it to diverge.
from Figure 2.7 (a), (b),

divergence is an accurate

Moreover, recalling the conclusions drawn
and (c), the series up to the onset of

representation of the exact integral for

"large kRz.”

The conclusion to be

drawn from this section is that

2
© -1kR2(c + 2Bt) © © . -ikRz(tz + 2Bt)
I, - € dt ~ Z T, I t” e dt . (2.105)
o 4._ t  _ 2Bt n=0 O

H H

where the symbol "." translates "has the asymptotic expansion” or "is
asymptotically equal to."” Each integral in the series is tractable,
and, as a result, it will be possible to express the total field

solution as an asymptotic series of closed-form terms.

2.3.5.1 The Formal Series Solution. The general integral in the

series Equation (2.105) can be sclved in terms of parabolic cylinder
functions. The functional form is (Gradshteyn & Ryzhik, 1965,

Integral #3.462[1)):

......
el

. ~ -
..................




- -]
2 2
n _-at -bt 1 b~/8a
dt T(n+ b/v2a

I t e ‘(2 )(n+1MQ (ntl) e D-(n+1)( /¥2a)

o a (2.106)
where I'(m) is the gamma function--for integer arguments [(m+l)=m!
~=and D_p(z) is the parabolic cylinder function. Several fundamental
relationships involving the functions D_p(z) will be useful for later

development (see Gradshteyn & Ryzhik, 1965, pp. 1064-1068). First,

2
D_ (2) = ST % arse(a)V) (2.107)

~N

andzo

2 2
D_z(z) =z /g e /4 erfc (z/YZ) - e 2 /4 s (2.108)

where erfc(z) is the complex complementary error function defined as

w
2 12 '
erfe(z) =— | e dat . (2.109)
/T
z
In addition, parabolic cylinder functions obey the following recursion

relationships:

20 There is a sign error in the expression for D__(z) found in
the text by Gradshteyn and Ryzhik. The expression givgn here is the
corrected form.
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Dp+1(2) - sz(z) + pr_l(z) =0

1 (2.110)
_— Dp(z) +-§ sz(z) - pr_l(z) =0

1 -
_ DP(Z) -3 sz(z) +D .(z) =0

ptl

for which the following equality (Abramowitz & Stegun, 1964,

Section 7.2.8) might prove helpful:

2
d 2 -z
— erfc(z) = - — e . (2.111)
az T

Using the recursion relations, it is relatively easy to derive the

following explicit terms

2 2 2
D_5(z) = @ e 12 erfe(z//D) [52—+%:| re /4 [— —ﬂ (2.112)

2 3 2 2
D_,(2) -/g e® /% erfe(z/vV2) [—32---;;} pe 2 /b [‘7+-§| (2.113)

2 4 2 2 3
T 2°/4 z_,z 1l -z /4 2z 3z
D-s(z"/;e erfc(z/VD) |37+ z."s]+e [ 2 zz.] ,
(2.114)

or, in general,
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2 2
Tz /4 -z7/4
D-(n+1) (z) -/;e erfc(z/v2) Q-(n+l) (z) + e P-(n+1)(z) ,
(2.115)
where
Q,(2) =1 P ,(2) =0
Q_,(2) = -2 P ,(2) =1 (2.116)

z 1
Q_(n+1) (z) = - ; Q_n(z) + a Q-(n-l) (2)
2 1
Po(m1)(@) = =S P (@) + TP ()
Now, translating “z" in the above to “b/ 2a” and substituting Equation

(2.115) back into Equation (2.106) ylelds a recursion relation for the

integral itself. That is,

[ -]

2 2
J e ot ~be dt = L/x b /4a erfc(b/2/a) En + En (2.117)
o

2Y a
where
= 1
By = 77 T@) Q_ 54y (6/2/2) (2.118)
(2a)
and
= 1
K = PANCTVE F(mtl) P_o oy (0/2/2) . (2.119)
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Noting that ['(wrt+l)=(m+1)T(m), the coefficients Em and Em can be
expressed more concisely as

E «=-2F +2F (2.120)

m 2a m-1l 2a m-2
and

R =-2% . +2§ (2.121)

-} 238 m-1 2a "m~2
where

E =1 Ko =0

o

(2.122)
= b = 1
EL*"2a X1 " 2a

The general integral at the beginning of this section has thus
been solved in terms of the complementary error function and two
general coefficients, for which recursion relations are provided. The
specific integral of interest here-~Equation (2.105)=--can now be
expressed from the above results by translating “"a” to ”ikRz“ and “b"

to ”ZikRzB." Thus, the asymptotic expansion of the integral I3 in

Equations (2.93) and (2.105) can be written in the final form

13 ~ Z 'rn [eo En + Kn] (2.123)
n=0

where

A e AN i - " N R S e N e o e a a ]
— e e Sncteande. il . . : 2 S . - N
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q
ﬁ - (m-1)
§ Em -Bgm-l + 21kR2 Emrz
' (2.124)
. (m-1)
: o = a1 T 20k, Fa-2
P,
P
| and E =1 K, =0

El = -B K1 = 1/21kR2 .

In addition, the parameter L has been introduced as
-1 %CE:: e-Az erfe(-1i)) (2.125)
%% " 2 1kR, ’
where
- 2 2.%

AT = ikRz[l + Bsinp - (1 - B7)* cosy] (2.126)

ﬁ and
—_
A= /ikRZ /{ + Bsinp - (1 - 82)3 cosy . (2.127)

All complex square roots in the above equations--including
(I-Bzf’--are to be taken to yield a positive real part. It must be
stressed that the definition for A in Equation (2.127) has been
derived from the argument of the parabolic cylinder function, and the
roots must be taken separately as indicated. This is important
because, in general, /T;???T'# /TF'V?TETZ when p is a positive

constant and positive real roots are taken.
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) The full solution for the field at the point (r,z) can now be
i written as
ile ikRZ ikR2 ®
. e e _ 4ikBBe Z + (2.128
. o(r,2) Ry + R2 (B + siny) Tn[eoEn Kn] : )
n=o
f

2.3.5.2 The Q-term Form of Solution. As mentioned in section

2.1, it 18 often desirable to express the total field as a simple sum

of a direct component from the source plus a reflected compoment that
appears to originate from an "image” source at (r,-zo). Hence, a

solution of the form

ile ikR2
d(r,z) = £ +q& (2.129)
R R
1 2
will be sought in this section.
The lagt term in Equation (2.128) can be re~written as
- IR, ®
- B8 e
., = - - . 2-130
: M EaTCT i Z[ 24kBRye T E -24KBR,T K ] ( )
n=0

~

Furthermore, it is convenient to re-express the product TnEn as

P SSAANCES ™ BRENERA
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- > E
(n-2k)>0 - “ n=k n _ T*E*
TnEn N Z k %0k |0 n nn (2.131)
(2B)
n=o
where
n-2k>0
= n-k
* n-k 4G
T - }: [ . }an_k [u] (2.132)
k=0

*
and the factor En - En/(ZB)n. New recursion relationships can be

derived for the starred coefficients, so that

E
% * 1 1
Eo =1 E,=*3B 772
{(2.133)
- *
E*a_-]-'-E* -L"__]'LE ,
m 2 m-1 8ikR.G "m-2

2

where the fact that Bz--G has been used.

Similarly the term (-21kBR2)‘I’nKn can be re-expressed as the

* &
sinple product Tnxn where

* *.-l
K =0 Ky :
(2.134)
a1 * _(m=l) %
L 2 Kp-1 ~ B1KR.C Fm-2

2

........
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When Equation (2.130) is substituted back into Equation (2.128),
the total field may be expressed in the form of Equation (2.129), with

the "spherical wave reflection coefficient” Q given by

=1+——LZ T*[ E*+K*] 2.135
Q (B + siny) n'€1%n n : (2. )
n=o

Here, the parameter e has been introduced where

e1 = —ZikBRze°

2
= -kRZ VG JiER e-l erfc(~1iA)
2

(2.136)
2

= i/T A e-x erfe(~-iA) ,

and A is defined by Equation (2.127).

2.3.5.3 The F-term Form of Solution. The asymptotic series

solution developed in section 2.3.5.1 can also be put into a form that
provides a more direct comparison to the classical plane wave
solution. As such, the solution would comprise a direct component
from the source, a "plane-wave reflected” component, plus a correction
term that accounts for the sphericity of the wavefronts (see Equation
[2.7]). Historically, several approximate solutions in both
electromagnetics and acousti:s have been expressed in such a form, and
these contain the so-called "F~term” or “attenuation factor."” The

solutions are expressed as
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. {kR
eile elkR2 el 5
d(r,z) = R + R R +(1-R)F R . (2.137)
1 P % P 2
where Rp is the plane wave reflection coefficient,
- sinp - B . (2.138)

P siny + 8

This form of solution is easily derived from the Q-term form

given in the previous section. Thus,

28 _sinp + 8 - siny + 8 _ 1 -Rr NS
(B + siny) (B + siny) P o

and, therefore

Q= Rp + (1 - Rp) F

*
where Tn {s giver . -
Equativns ..

Equatiur
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2.3.5.4 The Hankel Function Form of Solution. The results of at

least one recent study (Chien & Soroka, 1975), which applied
asymptotic techniques to the point source propagation problem, were
expressed directly in terms of the zero-order Hankel function. The
same function has also appeared in component terms (most oftem, the
“"surface wave"” term) in other solutions offered in the literature. In
view of this, the asymptotic series solution will be expressed in an

. alternate form that is also in terms of the Hankel function. It is
offered here mainly to facilitate comparisons with other solutions, as
the series forms presented so far in this study are the preferred
forms of solution. (The series solutions, in conjunction with the
recursion formulae, translate readily into computer programs for
providing numerical data.)

The first few_product terms T:E: from the Q-term solution,

Equation (2.135), can be written out explicitly to generate the

following series:

IR R T |

Partial

2 (2.142)
2 3
9 [ s[c] 35[c] 105 [c] + --]
e |] o+ S| == e —=—=|=
32(ikRZH)2 2\H 8 (H 16 (H .
+ ——— 4
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:
F where the parameters H and G are repeated here as
by
2.k
H= 1+ Bsiny + (1 - 87)° cosy
2% - (2.143)
G=1+8siny - (1 - )7 cosy

Each of the series in the brackets subscripted a, b, and ¢ can be

recognized to be simple expansions of the form (1+x)a such that

' -1/2
(] - -9
L Jda " B
_ SR (2.144)
[ ], - -4
_b. \
r ~5/2
[ 1o B9
c v

Using the fact that [L-(G/H)] = [(F~G)/H] = 2A/H, where A=(1-8%)%cosy,

the partial series in Equation (2.142) can be re-written as

32(1m2)1r2 24)

% r
F 1 9 7
-—}2 lL+gaaa* + ———
[ 81 ZA 128(1kR2A)2

5 r 12
** _(F 1 (F 9 P

Z Tafp = [ﬁ] 1+ 2 F[ZA] * [ O
Partial

-

Comparing this to the asymptotic expansion of the Hankel functiom

H(l)(z) (see, for example, Abramowitz & Stegun, 1964, Section 9.2.8)
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n(l) (z) - /_T;‘ eiz 1+ —siz + —9 2 b ew= (2-146)

3 ° m 128 (iz)

g

' enables Equation (2.145) to be re-phrased as

= 4 [MikR,A]? -1kR A

xx [F 27 T (D)

°. Z 'rnEn [ZA] [ 2 ] e Ho (k.RzA) . (2.147)
o n=o0

:; with the added fact that BG-(B+s:lmp)2, the total solution given by

:‘-‘ Equations (2.129) and (2.135) can be expressed in the final form

. ikR ikR

; e 1 e 2

: ¥(r,z) = —+7x

3 1 2

" -ikR,.Bsiny (2.148)
x -xre 2 erfe(-10) BP e, - 8%)% cosy]

kR, =

% + 28 e T*K*

: (B + siny) R2 nnan

. n=o

:

¥ 2.3.5.5 The Solution Using the First Term Only. For many cases
3 7

O of practical interest, the parameter kRz is latge21 and the asymptotic
: solution is rapidly convergent in the initial terms. Thus, using only
) 21 As examples: At 1000 Hz., for source and receiver on the

Al ground and separated by 100 feet, the value of kR, is 559. At 200 Hz,

for source and receiver 4 feet above the ground afid separated by 20

feet, the value of kR2 is 22.
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the first (n=0) term in Equation (2.135) often provides sufficient
accuracy. In such instances, the total solution can be written as

ile ikR2
e e
¢(r,2) g t~g R+ A -R)IF (2.149)
1 2
where
-12
F, =1+ i/mT X e erfc(-1d) (2.150)
and, again,
A = /IKK) J{'+ Bsiny - V1 - B2 cosy (2.151)

Re ¥ >0 .

2.4 The Solution for Perpendicular Incidence

Although the asymptotic series solution is valid fOt'w-90°

(receiver directly above or below the source), an exact solution can

be obtained for this special case in a straightforward way. Thus,

wvhen siny = 1 i3 substituted into the original transformed integral,

Equation (2.67), and it is noted that (1 - £2 + 24E) = (1 + 1£)2, the

integral can be re-written as
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]
® 1kR,[1 + 1(1 + B)E]
" e
.‘ Il = "st J (1 + 15 dE
g o
; e, 3 KB+ B8 (2.152)
o

"
b
!
k Using the relation (Gradshteyn & Ryzhik, 1965, Integral #3.352([4])
®
J £ — ax = - MEi()
% 5 [|argB|<m ; Reu>0] (2.153)
i
: ; where E1 is the expomential integral defined by .
" ! ex .
) Ei(w) = I-x—dx. s (2.154)
, - ) )
4
i
’_; the integral 11 in Equation (2.152) becomes
-1kR23
A 1 = -2ikfe Ei[:l.kRz(l + B)] . (2.155)
A
{
B ,
} Furthermore, Ei(w) has the convergent series expansion (Abramowitz &
; Stegun, 1964, Section 5.1.10)
9 ®
¥ -1)? B

Ei(-w) = v + 1nw + L)—_n!n ’ (2.156)
; n=1
-"‘!
b
:‘] where Y is the Euler constant, Y=0.57721 56649... The exponential
: integral also has the asymptotic expansion for large argument
(Abramowitz & Stegun, 1964, Section 5.1.51) |
b |
) , |
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w
B (~w) ~-s;_{1-5+.172-w3;3+ }
W w
(2.157)

2 .

[- -]
-W k
-=5 Z =RKL; Jarg w] < 3T
: k=0 v

In summary, the total field at the receiver point for

perpendicular incidence (r=0) is

eile_ eikR2 -1kR28
d(z) = z + - 2ikBe
1 2

E1[1kR, (1 +8)] , (2.158)

in which Rz may be replaced by R2 = h=g2z+ Z,.

When kkz is very large, the first term in the asymptotic series,

Equation (2.157), may be used so that the total field becomes

ikkl ikRz ikR

d(z) = & + £ -

(2.159)

thus reducing to the "plane wave” solution (Equations [2.4] end [2.5]

with sin ¢ = 1).
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CHAPTER III

% A MODEL FOR THE COMBINED PROBLEM OF

A POINT SOURCE PROPAGATION WITH A DIFFRACTING BARRIER

When a barrier located on an impedance plane obstructs the line
of sight from a point source to a point receiver, acoustic energy
; reaches the receiver by diffraction over the edge of the barrier. The

“"canonical” problem of point source diffraction by an ideal half plane

Pt

is relatively well understood; however, the attempts to apply its

solution directly to the problem here have met with little success.

Lidy i Lred 3

This is due to the fact that when a barrier is located on the ground,

the incident field at its edge is not a simple monopole field.

o 3 A W g8l

Instead, it is a complex field resulting from the propagation over the

impedance plane. Furthermore, the ground plane interactions on the

TR Ry A

receiver side of the barrier must be accounted for when predicting the

o 3

total field behind the barrier.

4

In this chapter, an "Edge-Plus-Images” model will be described

that merges the propagation results of the preceding chapter with

AL il

half-plane diffraction theory. The mathematical model is readily
programmable on a digital computer, and thus practical, engineering

calculations can be obtained with little trouble. Although the

b following discussion is in terms of a vertical barrier on a ground
plane, the results are general and may be applied to any thin, planar

é protrusion from a flat, impedance=-covered surface.
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3.1 The Geometrical Theory of Diffractioon

The use of Keller“s Geometrical Theory of Diffraction (GTD) in
solving practical problems has met with universal success, and it will
serve here as the foundation in building the diffraction model for a
barrier on a ground plane. The derivation of the GID formulation will
not be given here since this information is available in many texts as
well as in Keller”s original papers on the subject (see the references
cited in Chapter 1). The predictions of the theory have been tested
and confirmed many times in both the fields of electrqmdgnetics and
acoustics. Agreement with exact analytical solutions, when available,
has been excellent; correlation with experiments, in the absence of
mathematical solutions, has also been encouraging. Furthermore,
although it is in principle a high-frequency method, the GID often
performs with a high degree of accuracy down to wavelengths comparable
to the size of the scattering object.

Essentially, the GTD supplements ﬁhe approach of classsical
geometrical acoustics by including “diffracted rays,” which, as

opposed to "specularly reflected rays,” can penetrate into the “shadow

- zonme.” And just as the law of conservation of energy flux in a

“bundle of rays” (Fermat’s principle) leads to Snell”s law for
specular reflection (angle of incidence = angle of reflection),
similar arguments applied to the diffracted rays lead to the "law of
edge diffraction.” With reference to Figure 3.1, Fermat”s principle
prescribes that the total path length for the edge-diffracted ray S-E-

P should be a minimum (out of all possible paths connecting the

~--". -
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DIFFRACTED
RAYS

SOURCE

EDGE

Figure 3.1 The Law of Edge Diffraction: Incident Ray and
Diffracted Ray Subtend Equal Angles B with the
Edge. Diffracted Rays form a Cone with Apex at
Diffraction Point E.
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points). Hence, the law of edge diffraction can be stated as: when

‘“ an incident ray strikes an edge at an angle B , the set of diffracted
rays will comprise all those rays that also make an angle B (in the
“forward” direction) with the edge.22 The resulting "cone” of
diffracted iiys is 1llustrated in the figure. If the edge is straight
(as it is in the present barrier problem), the point E will be unique,
and only a single diffracted ray will reach the teceivet.23

Generally, the edge~diffracted field is described in the GTD

formulation by several factors: (a) a reference field at some point
along the ray, (b) a geometrical spreading factor depending omn the
radii of curvature of the edge and of the incident and diffracted ray
bundles, and (c) a phase factor accounting for the propagation of
energy over the entire length of the ray path. The reference field is
usually given at the point E on the edge and is expressed in terms of
a “"diffraction coefficient,” which describes the ratio of the
diffracted energy to the incident energy. It can be shown that for a
spherical wave incident upon a straight edge, the-diffracted field at

the receiver point P can be expressed in GID terms as:

22 The notation "B" for this angle has been adopted here in order
to be consistent with the customary usage in the literature.
Bopefully, the context will prevent any confusion with the admittance

Be

23 If the edge were not straight as shown, but curved, the angle
B8 would be measured from the line tangent to the edge at the point E.
Thus, the possibility for several rays reaching the receiver from
different points along the edge would exist.
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Rl ikRz
°d1ff(P) = ‘binc(E) De(¢°.¢.8) /W e R (3.1)

where the angles and distances are defined as in Figure 3.2. Here,

Oinc(z) is the incident field at the point E on the edge. For a

AR ASRRIR RN

simple point source, therefore,

1kR,
e
Ry

. Qinc(E) - (3.2)

The factor De is the diffraction coefficient for a straight edge; the

square root quantity is the geometrical spreading factor; and the last

.,
N
y
"

term accounts for the phase along the ray from the edge to the
receiver.

Probably the strongest advantage of tie GID formulation is that
all the relevant properties of the diffracting obstacle are contained
in the diffraction coefficient itself. If a wedge were being

considereé instead of a straight edge, the diffracted field would have

the same form as Equation (3.1) only the diff;action coefficient would
be derived from wedge-diffraction theory. For objects with complex
geometries, the diffraction coefficient would be taken from the
canonical problem (half-plane, wedge, sphere, cylinder, etc.) that
most closely describes the local shape of the object at the

diffraction point.

SN R O SN, S N
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P
SIDE VIEW
(a)
TOP VIEW
P
(b)
: Figure 3.2 Geometry of the Half-Plane Problem in Cylindrical
Coordinates. (a) Side View Showing Diffraction
Angles ¢, and 9. (b) Top View Showing Oblique Angle B.
A AT Ao T T T T S e T T T
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3.1.1 The GID Solution for a Rigid Half-Plane

In Keller”s original work on the Geometrical Theory of
Diffraction applied to the rigid or pressure release half-plane
problem, he deduced the diffraction coefficient from the first term in

the expansion of Sommerfeld“s exact solution. Thus,

D_(_,$,8) = Sl TR (3.3)
e 2/21k sinB cos [ 0 ] cos [ o > ]
2

-, rigid

+, pressure release
The diffraction coefficient has singularities at ¢ = -7+ ¢b and at
¢= 7~ ¢0, whicﬁ correspond to the physical shadow boundaries as
shown in Figure 3.3. Furthermore, when sing -+ O, the solution becomes
invalid. This latter condition corresponds to z0 in Figure 3.3 being
v;ry large relative to ro and r.

Many researchers have modified the Sommerfeld coefficient or
derived independent expressibns in terms of Fresnel integrals, which
remain valid in the transition regiohs of the shadow boundaries. The
more exact diffraction coefficient for a rigid half-plane can be

written (Hayek, in Varadan & Varadan, 1982) as

.......

L e
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-1A2
D06 ,8) = SBEW A e g _ 7 ih gy
° Y2k 2 sinB
(3.4)
-132
+m (B) @e [1 - /z-e"i'ﬂ'/llr*(lnl)] ,
v2k 2 sinB
where sgn(x) means the sign of the argument x, and
(¢ + ¢_]
A = /AL cos 2 2 ’
J
(¢ = ¢
B = /kL cos L—_Z—QJ s
2R.R (3.5)
L=—i2 5107 ,

Hh+h

and F*(x) = C(x) + 1 S(x) ,

x x
where C(x) -/-;Z-J costz de , S(x) = /%J sintz de
o [

are the Fresnel cosine and sine integrals, respectively.

3.1.2 The GID Solution for an Impedance Covered Half-Plane

Recently, an exact integral solution has been derived (Kendig,
1977) for the diffraction by a half-plane with locally-reacting
impedance surfaces. The advantage of this solution over a similar

contribution by Malyuzhinets (1955, 1962) is that Kendig”s exact

.
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integrand is in closed form, thus allowing asymptotic techniques to be

applied to the integral for its evaluation. The resulting solution

TR TS T ot B DT

has been adapted to the GTD formulation (Hayek, et al., 1978) and the

diffraction coefficient can be written:

sgn (A) ¢l(¢) /KL e.“"kA

RA AR Ll il

: -in/4
D,(¢:,,8) = =i (1 - vZ &% pxqla))
(3.6)
-1kB
sgn (B) ¢,(9) YKL e -

g WY b pigm Y ser e b

/
in which the parameters are defined by Equation (3.5). In additionm,

g

Pt of

the special functions Ql and 02 contain the impedance information and

can be expressed as

¢ £¢,
1,2 [(I’ + I' ] sin —— 2 t (I‘ - I‘z)]] 3.7)

in which
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r - sind ¥ sin6>

1,2 [s:l.n9+ + 2 cos % cos To

z [ [o+ ¢ m ¢ - ¢ &m

{sin6+ + 2 cos -g cos [ 4° ] t gin [——Zo—-—-:l}
. /
¢ N . (3.8)
+ ¢ ¢ + ¢o i ¢ - ¢° *r
sind~ + 2 cos 5 |cos 2 t gin A ‘

The impedance of the half-plane surfaces has been expressed in terms
of the so-called "Brewster” angles g* , for the face at ¢ = 47, and 07,

for the face at ¢ = -7, where

stad® - 25
2~ sinfB

(3.9)

Because the field at the receiver is affected more by the
impedance on the insonified (source-facing) surface of the half-plane
than by that on t':he "dark” surface, an expression for the case when
® = 0 (rigid) and 6+ arbitrary might be useful for practical cases.
Thus, for the impedance-rigid half-plane, the special functions

become:

' e ' oo
I:I'l sin’ [ i o] - I‘2 cos> [ T OH . (3.10)

where

....................

.......................
........................
.....................
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' (sing - sin6+) cosd/4
r, = , (3.11)
¢ +m o +
[sin6+ + 4 cos g— cos % cos [ 2 2 ]] sin 2 2
and

[sine+ + 4 cos !22 cos % cos (4:0 - l‘:]] sin %

' 4
r, = (3.12)
¢ ¢ +7
[sin6+ + 2 cos % cos -23] sin 0 A

3.2 The GTD Model for the Barrier omn a Ground Plane

Having defined the edge~diffraction coefficients to be employed
in the Geometrical Theory of Diffraction formulation, it is now a
simple matter of incorporating the ground effects into the model.
Just as the diffraction effects were lumped into the coefficient
D(¢o,¢,B) in Equation (3.1), the incident field at the barrier edge is
totally contained in the term ¢inc(E). When a locally-reacting ground

plane is present beneath the source, &, __(E) is no longer a simple‘

inc
monopole field but instead represents the total field that exists at

the edge point E. This field is derived from the ground propagation
solution described in Chapter 2 and will be modelled as a super-
position of two ray paths——the direct path and the ground-reflected
"image” path. Similarly, the energy spreading from the point E on the
edge to the receiver does so via direct and ground-reflected paths.
The ground reflections are handled by simple geometrical acoustics;

however, the "spherical wave reflection coefficient” is used.
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The construction of the "Edge~Plus-Images” model can best be
explained with the help of illustrations. Figure 3.4 shows
schematically how the propagation from source to reciver can be
modelled as a superposition of four distinct half-plane diffracted ray
paths. In Figure 3.4 (a), the "direct” ray from source--to edge--to
receiver does not interact with the ground and so is represented by
the standard GTD half-plane equation. The diffraction coefficient can
be either that from Equation (3.6) for an impedance-covered barrier or
that from Equation (3.4) for a rigid barrier. Iz the eJjuations in
Figure 3.4, the geometriczl spreading factor A(R.,nb) is simply (see
Equation [3.1])

/R \
AR ,R) = [—B o | (3.13)
ALY R‘(R. + Rb)

In Figure 3.4 (b), the source-ground—edge-receiver ray is still
modelled as a half-plane diffraction problem, but the incident ray is

assumed to originate from the source "image” in the ground S_ and is

1
correspondingly modified by the spherical wave reflection coefficient
Qsl(wl,zl,k3). In the most general sense, this reflection coefficient
is as given by Equation (2.140), but in almost all practical
situations, the first term in the expansion provides sufficient
accuracy. Therefore, the model has been implemented here using Fl. as
defined by Equations (2.149) and (2.150), for the ground reflections.

As indicated, the factor Qs depends on the reflection angle *1- the
1

ground impedance on the source side 21, snd the image-to-edge distance

- . L T T R N T - R - e .
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23. It is interesting to note that the edge-~to-receiver distance R4

for this path aiffers, in general, from the analogous distance R2 for

path 1. This is a consequence of the law of edge diffraction. Since

815187 W X

A k. faands
3

the incident ray is coming from the source image and not the source:

itself, it makes a different angle with the edge and defines a

S

different "poirit E” along the edge. Therefore, the exit ray to the

B Yty

. receiver (making an equal angle with the edge) must correspondingly
change in length. The diffraction coefficients reflect this fact
$ also, and thus the notation for the De's has subscripts on the angle
8.

Similar reasoning applies to path 3, the source-edge-ground-
receiver ray, where le(wz,zz,ns) depends on the properties of the
[ : ground on the receiver side of the barrier. To model the final

source-ground-edge—ground-receiver path, two reflection coefficients

- Vena Kai

Qs and QR are required, as indicated. Note that since a different
2 2

angle B is again defined by this ray path, the ground reflection
angles w3 and w& are generally not equal to wl and ¢h, respectively.

The total diffracted field at the receiver is

et

¢

=9 ¢ ¢ ¢
f difftot

(3.14)
diff1 + diff2 + diff3 + diff4 .

If the receiver were located outside of the acoustic shadow cast
by the barrier--note: each ray path shown in Figure 3.4 defines its
own shadow boundaries--then the appropriate non-diffracted geometrical
fields must be added to the above solution to obtain the total field

at the r~ceiver. That is, with reference to Figure 3.3,

.
» DT 2 T T T T T e N L e e e Sttt
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® =2 -T < ¢ S =T+
tot difftot o
®or = ne ¥ Cases ~TH, S ¢ = T, (3.15)
tot
¢tot E Qinc + <pref + Qdifftot Tr-q)o Sésm

where Qinc is the direct field from source to receiver, and quf is
the barrier-reflected field.
Several limiting cases, which simplify the model equations in

Figure 3.4, may be of practical interest. Thus,

(a) When the source ground is rigid, Qs = Qs = 1.0

. 1 2
(b) When the receiver ground is rigid, QR = QR = 1.0
1 2
(c) When the source is on the ground, Qs = Qs H
1 2
Ry =Ry =R, s Ry=R, 3 Ro=Ry 3
¢°'¢0 H 81-82 and 83=B4;QS-QS H
1 1 2
Al = Az and. A3 = A4 ;s therefore, Del = Dez
and De = De .
3 4
(d) When the receiver is on the ground, QR = QR 3
1 2
R2 = R6 = R8 H R1 = R5 and R3 = R7 H
¢-¢I;Bl-83 and 82-84;
A1 = A3 and Az = AA 3 therefore, Del = De3
and De =D

2 %

.........................................
..................




(e) When the source and receiver are both on the ground,

i) = Qg Puser Paier. T R Paifs
1 3 1
and Oy, p¢ u Qs Qg °diffl

(f) When the source and receiver are both on a rigid ground,

o = 49 .
difftot diffl
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CHAPTER IV
NUMERICAL RESULTS

The mathematical solution for the spherical wave propagation
problem, as well as the model developed for barrier diffraction, are
functions of several geometrical and physical parameters. To
determine how the sound field at the receiver predicted by the
spherical wave theory differs from that predicted from the classical
plane wave theory, numerical results for several representative
source-receiver geometries will be presented in this chapter. For
propagation in the absence of a barrier, the dependence on the
parameter kR, the reflection angle Y, and the ground impedance ZN’
will be investigated. When a diffracting barrier is prese-* the
dependence of the field on barrier height and di¢ .o 'tion angle will
also be studied.

In practice, it may be important to know when a problem demands
the use of the more exact spheric:l wave theory, since the gain in
accuracy could be significant. Conversely, the plane wave solution is
extremely simple, and its accuracy may be sufficient enough to make
its use economically advisable. This is particularly true for
problems in which a continuous, physically-extended source of sound is
being modelled as a sequence of point sources (such as the flow of
highway traffic), and for which the field calculations, therefore,

must be performed many times.
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4.1 Numerical Results for the Ground Propagation Problem

This section presents graphical data predicted from the ground
propagation theories given in Chapter 2. The ground plane is assumed
to be locally-reacting with its impedance specified by real and

imaginary parts (since the time convention e-iwt

has been adopted
here, a positive imaginary part X of the impedance ZN-R+1X corresponds
to a "springlike” reactance). Data from the spherical wave theory
derived in this study 1s presented in two forms, representing two
levels of complexity. First, the full asymptotic series solution is
used as the most accurate description of the field; second, only the
first term in this setieé is employed, as an approximation.
Preliminary tests have shéwn that both of these forms are so close to
the exact solution for many practical impedance and geometrical
conditions that graphs of the data would essentially show one curve.
For this reason, the values of the parameters chosen for many of the
following plots are deliberately "atypical” so that differences in the

data may be seen and studied.

4.1.1 Dependence on the Parameter kR

As noted in the derivation in Chapter 2, the asymptotic series
solution for the point-to-point ground propagation problem approaches
the exact (integral) solution as the parameter kR2 increases in value.
For kR, >> 1 the series--in Equation (2.130), for instance—-is

extremely convergent and accurate in the first few terms, well below




‘the point where the terms begin to diverge. As kRz gets smaller, more

110

terms are necessary for accuracy, yet, correspondingly, the onset of
divergence occurs sooner. Finally, when kRz is very small, divergence
is immediate, and increasing the number of terms only degrades the
accuracy of the solution.

For very large kRz, the curvature of the wavefronts becomes
locally "plane” in the vicinity of the ground reflection point, and
the asymptotic solution should approach the desired plane wave
solution. That this is indeed the case is confirmed by the numerical
data.

The graphs in this section, as well as most of the others in this
chapter, compare four descriptions of the sound field at the receiver.
The numerical data were calculated on a digital computerl(IBM Model
3033 Processor) from (i) a fine—-point numerical integration24 of the
exact integral expression in Equations (2.93) and (2.101), ({i) an
"optimal” number of terms in the formal asymptotic series solution
given by Equation (2.128), (11i) the first term in the latter series
as represented by Equations (2.149) - (2.151), and (iv) the plane-wave

reflection coefficient form of the solution, Equations (2.4) and

(2.5). For calculations using the asymptotic series, a truncation of

the series was made at the point where the terms just begin to
diverge--although always including a minimum of two or a maximum of

fifteen terms. The solution using only the first term in the series

24 The numerical integration was performed using a standard five-
point Newton-Cotes quadrature technique taking a finer and finer mesh
of points until the desired degree of convergence was obtained.
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is referred to as the "F-term solution” in the following discussion.

To facilitate comparisons of the data within each graph, the
curves in this chapter have been drawn as straight line segments
Joining discrete, calculated points. Strictly speaking, then, the
values on a line segment between two calculated points do not
represent valid data, and the spparent "jaggedness” of the curves in
some regions is not indicative of the true shape of the data. The
number of calculated data points may vary from one plot to the next,
but they are always equally-spaced along the axis, and their actual
locations can usually be deduced, if necessary.

The data for the case where both the source height (Sht) and the
receiver height (Rht) are 1.0 feet above the impedance plane, and
vhere the separation (Sep) is 38 feet (corresponding to a reflection
angle of W-3°), are plotted in Figure 4.1 (a) and (b). The normalized
ground impedance has been assigned the relatively low value ZN = (0.3,
0.5). The vertical axis for Figure 4.1 (a) is in terms of the

attenuation, defined as

dB , (4.1)

Attenuation = - 20 10310

where Qtot is the total (direct plus reflected) field at the receiver,

and °dir is the direct field only (eﬂ‘R

1/R1). The latter is the
"free" field that would have existed at the receiver in the absence of
the ground. The same quantity defined by Equation (4.1) is sometimes

referred to as the "excess attenuation relative to spherical

________
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Figure 4.1 Calculated Data for (a) Attenuation, and
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spreading.” Finally, it should be noted that a negative value of

pp T W Y
k

attenuation means that the received field has been enhanced relative
to free field level.

Figure 4.1 (b) presents the same data in terms of the magnitude
of the ratio of reflected to direct emergy. In practice, this form of
presentation may be more useful for pulsed or transient experiments in
which the direct and reflected waves can be measured separately. For
’ reference, the reflected term Ores for each curve is given as follows
; (with quantities defined in Chapter 2):

1) Exact Integral:

L -1kR2[:2+23t]

0 B YU Vo J 2 de (4.2)
refl R, (8 + siny) . \/& " Ei " 3!2\ .
. F F
2) Asymptotic Series:
A 1kR, ikR, =
- & _ 41kB8Be
o 2 R Z T [e,E + K . (4.3)
2 2 =0
3) First Term Only:
1kR2
e
¢ref3 R, (R *(1-R)F ) (4.4)
a2
Fl =1+4/TAe A erfc(-1))
ikRz
4) Plane Wave: ® - R & . R = fsiny - B) (4.5)

t‘ef4 ] R2 ’ P (siny + g)

As expected, and as is readily apparent from either Figure 4.1
(a) or (b), the plane wave solution (long-dashed line) is not very

’ accurate for this near-grazing incidence geometry. On the other hand,

..........................................
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the asymptotic series solution (solid line) agrees well with the exact
integral (short-dashed line) for kkz 2> 3, a surprisingly low value for
kRz. Below this value, the series is divergent, and the predictions
become erratic. The medium-dashed line shows that using only the
first term in the full solution--the F-term solution-- gives very good

agreement, differing by a few dB for medium values of kR It is

2°
remarkable, though, that the F~term solution yields very good
predictions down to kRz = 0.1, corresponding, for the distances
considered here, to a frequency of 0.03 Hz.

All four solutions eventually agree when kRz is sufficiently
large. Physical intuition predicts this~——the wavefronts "look"™ like
plane waves--but it can also be deduced from the governing equations.
For example, with reference to Equation (4.4), as kRz gets large, )
also gets large, and F1 can be shown to have the asymptotic expansion
(see, in part, Abramowitz & Stegun, 1964, section 7.1.23):

-2 1 1°3  1¢3+5
F, - 2i/™ A e H[~-Im(A)] - - - - (4.6)

a2 a* 8

where the Heaviside operator

[

Im(z) >0
H{ z ] = (4.7)
0; Otherwise

is necessary to account for the fact that erfc(=-z) = 2 - erfc(z).

Thus, Fl becomes negligible as kRz gets large, and Equation (4.4)

reverts to the plane wave solution.

DR N I I T P S -~ e .
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o The attenuation plotted in Figure 4.2 (a) and the ratio of the

| fields in Figure 4.2 (b) are for the same source-receiver geometry as
in the previous case, but for a higher ground impedance, ZN = (2.0,
3.0). Two observations can immediately be made when Figure 4.1 and
Figure 4.2 are compared. First, the exact, the full asymptotic
series, and the first-term-only solutions are in very close agreement,
even for values of kR, down to O.1. In fact, for kR, 24, the

2

predictions are essentially identical. Second, the "overall” level of

attenuation is lower for the higher impedance ground. This trend is
3 also not surprising, and in the limit of a rigid ground, both the
; classical theory and the present spherical wave theory predict a
g "gain” of -6 dB.

Some further, less obvious, conclusions can be drawn from the
b - results of Figures 4.1 and 4.2. The peak of maximum attenuation

(centered at about kRz-ZO for Z,=[0.3,0.5] and at about kR,=150 for

2
ZN-[2.0,3.0]) is not a result of propagation path length interference,
but rather is strictly an "impedance effect.” For a fixed geometry,

this maximum will move to higher and higher frequencies as the

1mped§nce increases and will eventually disappear or "merge” with the

M -l':-’.*.".’."-‘"' T 0 v,

first true path length interference peak in the limit when the ground

becomes rigid.

Figure 4.3 illustrates the numerical results for the case where

.o’

source and receiver are both directly on the ground (Y = 0°) and

separated by 57 feet. The impedance is the same as in Figure 4.1, ZN

P s |

- = (0.3, 0.5). The plane wave curve 18 not shown here, since the
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predicted attenuation would be infinite for all values of kRZ

(Rp = -1, RI-RZ)’ The asymptotic solution again gives extreme
accuracy for kRz 2 4, vhile the F~term solution differs by only a few
dB over most of the range.

An interesting fact can be observed in either Figure 4.1 (a) or
in Figure 4.3. That {is, for very low kRz, the exact solution (as well
as the F-term solution) predicts a gain of the order -7 dB. Thus, the
field at the receiver is actually higher than that which would exist
if the ground were perfectly reflective. This is again a direct
effect of the finite ground impedance and has been referred to in
various ways in the literature, among them the "surface wave effect,”
a "ducting of energy,” a "focalization” phenomenon, and a "surface
layer effect.” Whatever the terminology, this phenomenon--the gain
could be higher than 7 db—-is a testament to the fact that the
reflected wave is not spherically symmetric, but that instead emnergy
is "re-radiated” along the entire boundary. This re-radiation is with
different phases from different points along the surface and could
result in constructive interference at certain field points.

Some conclusioﬁs about the effect of increasing the reflection
angle can be drawn from the next pair of plots in Figure 4.4 (a) and
{b). Here, the source and receiver have been raised to five feet
above the ground (V=10°), and the impedance is Z,=(0.3, 0.5) in the
former and ZN-(Z.O, 3.0) in the latter. The counterpart cases are
those in Figures 4.1 (a) and 4.2 (a). Comparing Figure 4.1 (a) to

Figure 4.4 (a) and Figure 4.2 (a) to Figure 4.4 (b) shows that the

»
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Figure 4.4 Calculated Da  for Attenuation as a Function of kR..
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(b) Moderately High Impedance.
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t: peak of maximum attenution shifts to lower values of kR2 as V¥
increases. Inherent in this trend is the fact that the range of kRz
for which the plane wave solution becomes valid begins at a lower
value when the source and receiver are situated at a higher elevation
.l above the ground. Furthermore, for each impedance case, the overall
E; attenuation decreases as | gets larger, due to the fact that the
ground appears "harder” at larger reflection angles. It might be

interesting to note that the second peak in both Figure 4.4 (a) and

f; (b) (at kRZ = 500) is, in fact, due to path length differences and
-

hence does not shift significantly as Y goes from 3° to 10o (R1

= RZ)' Conversely, the impedance peak shifts by more than an order

of magnitude.

To complete this section, numerical results for a case of a very
large angle of reflection and a very low impedance are presented in
Figure 4.5 (a) and (b). The source height is 10 feet; the receiver
height 1s 20 feet; the separation is 30 feet (y=45°); and the ground
impedance is ZN-(O.é, 0.3). Here, the impedance-effect attenuation
peak has shifted to a very low value of kRz, and path length
interference prevails for kR2 > 10. The plane wave solution yields
predictions as accurate as the F-term predictions for all kR2 greater
than about 5.

Table 4.1 summarizes the geometry and impedance conditions for

the cases plotted in this section.
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4.1.2 Dependence on Reflection Angle

To investigate the dependence of reflection angle ¥ on the

received acoustic field, it is necessary to hold the parameter kR

2
constant. Thus, the approach illustrated in Figure 4.6 was used for

generating the numerical data plotted in this section. The source
image-to-receiver distance RZ’ the source height, and the frequency
are held constant as the receiver point revolves around the image. In
this way, ¥ varies from its initial position with the receiver on the
ground to its final value of 90°. Of course, R1 also will vary with
the angle , but all of the parameters in the reflected field terms
will remain constant.

The results plotted in Figure 4.7 and Figure 4.8 compare two
values of the parameter kR2 for a low value of ground impedance Here,
the source height is fixed slightly above the ground at 0.1 feet; R2
is 12 feet; ZN = (1.2, 1.8); and kR2 = 6.7 (frequency = 100 Hz.) in
Figure 4.7 and kR2 = 33,5 (frequency = 500 Hz.) in Figure 4.8.

The asymptotic series solution is indistinguishable from the
exact integral solution for all values of ¥, and only very slight
differences can be detected with the F~term form of solution. On the
contrary, the plane wave solution is totally inaccurate for small
grazing angles yet improves as J increases. For the low value of kR2
= 6.7, this improvement is not significant until Y is greater than

30°, whereas for the modestly-high value of kR2 = 33.5, the plane wave

solution 1is highly accurate for values above w-So
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SOURCE

SOURCE
IMAGE

Figure 4.6 Method of Varying Reflection Angle Y while Holding
Other Parameters Fixed.
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The response curves of attenuation vs. reflection angle will be
different for different ground impedances. In Figure 4.9 are plotted
four sets of curves corresponding to four values of impedance that
differ by factors of ten from each other. The plane wave solution is
compared to the F-term solution only, since the latter has been
consistently close to the exact and asymptotic solutions. The value
of kR2 has been fixed deliberately low to force differences in the
solutions so that tﬁe trends in the data could be observed. Here, the

source height is at 1.0 feet; R2 is fixed at 12 feet; kR, = 3.35

2
(frequency = 50 Hz.); and the four values of impedance are as shown on
the graph. As expected, the bottom two sets of curves show that as
the impedance increases from ZN-(I.O, 0.5 ) to ZN-(IO.O, 5.0), the two
solutions fall closer into accord. However, the top two sets of
curves show the opposite trend. For the extremely low impedance
ZN-(O.OI,O.OOS), the solutions are identical, yet as the impedance
increases tenfold to Zy=(0.1,0.05), the predictions begin to differ.
This {8 an interesting result, but it should not be surprising. The
plane wave theory, based on the image method, is exact for either
infinitely rigid or pressure release surfaces. Therefore, as Z2—0,
the plane wave solution becomes more accurate, and it should agree
with the sphefical wave F-term solution.

The geometry and impedance conditions for the cases plotted in

this section are summarized in Table 4.2.
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4.1.3 Received Spectra Over a Practical Ground Cover

In several of the previous graphs, thg value of ground impedance
was held constant as kRz or frequency varied. While this may be
necessary for studying the sensitivity of various parameters, the
impedance of actual surfaces is rarely frequency-independent. The
problem in practice is more often: given a ground surface between a
source and a receiver characterized by its impedance measured at
several discrete frequencies, predict the attenuation at the receiver.
A common ground cover is outdoor grass, and one particular type--the

go—called NRC25

grass-~has the third-octave values of impedance shown
in Table 4.3. Using the values of frequency and impedance given in
the table, plots of attenuation versus frequency have been generated
and are plotted in Figures 4.10 - 4.12. The first two of these graphs
shows the effect of symmetrically raising both source and receiver,
while keeping the horizontal separation constant. Thus, with a
separation of 50 feet, the source and receiver move from 0.1 feet
above the ground (¢-0.23°) 1p Figure 4.10, to 1.0 feet (¢-2.3°) in
Figure 4.11 (a), and to 2.0 feet (¥=4.5°) in Figure 4.11 (b).

Although the impedance is not constant here, the trend of the

attenuation maximum woving to lower frequencies and the overall
attenuation decreasing with increasing ¥ noted in section 4.1.2 is

still apparent. Again, the plane wave solution becomes more accurate

25 The impedance of this outdoor surface was measured by several
methods at the National Research Council in Ottawa (Embleton, et al.,
1975); hence the abbreviation in the name.
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Real and Imaginary Parts of the Impedance
of Outdoor (NRC) Grass for Third-Octave Values of Frequency.

Frequency

63
80
100
125
163
200
250
315
400
500
630
800
1000
1250
1630
2000
2500
3150
4000
5000
6300
8000
10000

Table 4.3

Real

20.0
18.0
18.0
16.0
14.0
13.0
12.0
9.9
9.0
8.0
6.0
5.0
4.0
3.0
2.5
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0

Imaginary

28.0
26.0
24.0
22.0
19.0
17.0
14.0
12.0
10.0
8.0
6.0
5.0
4.0
3.0
2.5
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
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Figure 4.11 Calculated Data for Attenuation as a Function of Frequency
for Propagation over Grass.

F-term and Plang Wave Solutions.
Sep=50.0, Sht=1.0, Rht=1.0, and y = 2. 3
Sep=50.0, Sht=2.0, Rht=2.0, and ¢ = 4. 6°
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for larger angles of reflection. Of practical interest is the fact
that the grass-covered ground appears rigid (attenuation = -6 dB) for
frequencies below about 800 Hz. The low-frequency noise of
automobiles and trucks is not well-attenuated over grassland.

The data in Figure 4.12 are for source and receiver both 1.0 feet
above the ground and separated by 500 feet. In this case, then, the
reflection angle is the same as for the case plotted in Figure 4.10,
namely ¢ -0.230, but the distance R2 is larger. With reference to
Figure 4.10 (b) and 4.12 (b), it can be seen that the reflected field
for the plane wave has not changed at all since Rp is independent of
R23 however, the spherical-wave reflected field is quite different in
Figure 4.12 than in Figure 4,10 because the F-term itself depends
explicitly on R2 (;ee Equation 4.4).

To conclude this section, data for near-grazing propagation over
a grecund surface comprising an indoor-outdoor carpet material is
. presented in Figure 4.13. The impedance values for the material are
given in Table 4.4. This particular carpet has found use in reduced-
scale model experiments (Lawther, et al., 1980), and hence the
frequencies in both Table 4.4 and in Figure 4.13 are higher than those-
presented thus far. The interesting feature in the plotted data is
that the "gain” is well in excess of -6 dB for several values of
frequency. This is most clearly shown in Figure 4.13 (b) where the
magnitude of the reflected field, given by Equation 4.4, can be more

than 3 times as great as the direct field.
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Figure 4.13 Calculated Data for (a) Attenuation and (b) Reflected/
Direct Ratio as a Function of Frequency for Propagation over Carpet. o
F-term and Plane Wave Solutions. Sht=0.33, Rht=0.25, Sep=24.0, y=1.4 .
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Table 4.4

Real and Imaginary Parts of the Impedance
of Indoor-Outdoor Carpet Material

for Third-Octave Values of Frequency.

Frequency Real Imaginary
500 20.00 25.00
630 15.00 20.00
: 800 9.00 18.55
é 1000 2.53 13.02
; 1250 2.44 12.13
: 1630 1.41 7.41
5 2000 1.52 9.63
2500 0.74 4.26
3150 0.80 3.29
4000 0.91 2.38
5000 1.90 1.52
6300 1.99 3.47
8000 1.77 2.04
10000 0.34 ~0.59
12500 0.63 0.89
16300 0.40 0.12
20000 0.51 0.11
25000 0.63 -0.12
31500 0.74 -0.23
62500 0.80 ~0.40

80000 0.90 -0.23
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: The geometry and impedance conditions for the plots given in this

t‘ section are summarized in Table 4.5

4.1.4 Results for Perpendicular Incidence

p The exact solution to the problem of point source reflection by
an impedance plane for perpendicular incidence is given in Section 2.4
in terms of the exponential integral. For small arguments the
exponential integral could be expressed in a convergent series

expansion, and for large arguments, it can be written in terms of its

asymptotic expansion. As has been shown, the first term in the
asymptotic series will generate the plane wave solution given by
Equation (2.159).

Plotted in Figure 4.14 are the magnitudes of the ratios, in dB,
of (a) the total field at the receiver to the free field and (b) the
reflected field at the receiver to the free field for a source 3.0
feet, and a receiver 1.0 feet, above the ground plane, respectively.
The impedance of the ground is ZN = (1.4, 1.3). The short-dashed
curve represents the exact solution to the perpendicular incidence
problem, obtained by numerically integrating Equation (2.152). The
medium-dashed line is the calculated solution using the first two
terms in the convergent series expansion of the exponential integral,
Equation (2.156), and the long-dashed line is the solution using the
first two terms in the asymptotic series, Equation (2.157). Finally,

the solid line curve is the plane wave solution. T
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Figure 4.14 Calculated Data for (a) Attenuation and (b) Reflected/

Direct Ratio as a Function of kR, for Perpendicular
Incidence. Exact, Two Terms in isymptotic Series, Two Terms
in Convergent Series, and Plane Wave Solutions. Low ZN
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It can be seen that the predictions using the first two terms in
the convergent series is very accurate for kR2 < 1 but veers
erratically for values above that. When the first two terms in the
asymptotic series are used, on the other hand, excellent agreement
with the exact solution is obtained for kR2 2 3, whereas the plane
wave solution (referring to Figure 4.14 [b]) requires kRz 2 50, or so.
It should be emphasized that these results are for a relatively low
value of impedance, and that for most practical impedance surfaces (in
acoustical studies in air) the plane wave solution will be much more
in accord with the exact solution.

Whether the value of kR2 is small or large, there is one ground
impedance region for which the plane wave solution, if used, should be
applied with caution. That is where the value of admittance f —* 1. .
From Equation (2.159), it can be seen that the reflected field
vanishes for B=1, and the attenuation becomes zero. Physically, this
is simply the ideal "matched” condition where ZN-I (unnormalized
impedance = pc), and no energy is reflected. The spherical wave
theory, however, does predict some reflected energy for this case.
Figure 4.15 (a) and (b). show the familiar "standing wave pattern”
that is obtained when the source is held fixed at some distant point
above the plane (here, 100 feet) and the receiver is moved away from
the surface. Experiments based on this standing wave pattern (using a
pressure microphone or hydrophone) are often conducted to calculate

the value of surface impedance. The ground impedance in Figure 4.15

(8) 18 2y = (1.0, 0.05) and in Figure 4.15 (b) 1s Zy = (1.0, 0.005).
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Although the scales on the vertical axes are greatly expanded, the

difference in. the theoretical predictions could be important in

practice.

4.2 Results for the Barrier Diffraction Problem

This section presents numerical results from the combined sound
propagation-barrier diffraction model described in Chapter 3. The
ground on either side of the barrier is again assumed to be locally-
reacting, and an arbitrary impedance may be assigned to each side
separately. The source and receiver can be located at any non-~
coincident points, although the GTD method may become inaccurate if
either is closer than a few wavelengths from the edge. The barrier
itself will be assumed rigid for the present calculations.26 The
relevant parameters to be investigated in this section are again kR
and ground impedance ZN’ but in addition, the dependence of the
predictions on the barrier height and the diffraction angle ¢ will be
examined.

The attenuation as defined in the previous section will again be
plotted, since it is a useful quantity for comparing one solutiom to
another or for comparing one geometry to another. 1In noise control

26 Although the theoretical solution for an impedance-covered

half-plane was presented in Chapter 3, prior sensitivity studies
(Hayek, Lawther, Kendig, & Simowitz, 1978) have shown that the
differences in the sound field for the impedance barrier relative to
the rigid barrier were not significant for most practical cases.
Computations using the diffraction coefficient given by Equation
(3.6), then, were deemed unecessary for the purposes of the present
study.
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practice, however, a more informative quantity is the "insertion loss”

DA AT XS Nl

of the barrier, which relates the actual field at the receiver to the

3 field that would have existed there in the absence of the barrier (but
L2

f in the presence of the ground). Thus, graphs of the data will also be
*l "given here in terms of the insertion loss, defined formally as

§ - ¢bartiettot

3 Insertion Loss = =20 log10 dB , (4.8)

groundtot

where °barriert°t is the total field at the receiver point when the

barrier is present and ¢

ground is the received field over the

. tot
impedance plane alone. Note that the latter field must be calculated

separately, using the ground propagation theory of Chapter 2. Because
the Edge-Plus-Images model uses only the first term in the asymptotic
series solution to compute the ground reflections, the calculation of

¢

ground for the insertion loss data has also been performed with

tot
only the first term (the solution given in Section 2.3.5.5).

Some interesting features of the Edge-Plus~Images model should

a2 A
“a e

perhaps be pointed out before discussing the numerical results.

wema e
s s .

First, because the critical angles defining the acoustic diffraction

: are measured from the top of the barrier edge (refer to Figure 3.2),
, the actual (absolute) location of the ground is of secondary

o importance. That is, from the standpoint of the model, the ground
3

need not be horizontal. The configuration depicted in Figure
4.16 (a), which might represent a barrier on a hillgide, is

nathematically identical to that shown in Figure 4.16 (b), which could

......
PO T T
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(d)

Figure 4.16 Several Configurations that can be freated by the Edge-
Plus-Images Model. The geometries in (a) and (b) are mathematically

equivalent. In (c) the ground need not be horizontal, and in (d) the
barrier height need not be constant.
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represent a "tilted” barrier on a horizontal ground. Furthermore,

& since the ground may have different "slopes” on either side of the

: barrier, geometries such as that in Figure 4.16 (c) can be addressed
by the model (provided the source and receiver "images™ in the ground
i' remain on the same side of the extended half-plane as the source and
receiver themselves). Finally, since the location of the edge point E
(Figure 3.1) determines the diffraction angles, the "height” of the

F barrier need not be constant relative to the ground. Therefore, a
very general configuration such as that illustrated in Figure 4.16 {(d)

can be solved by the Edge-Plus~Images model.27

4.2.1 Dependence on the Parameter kR

Figure 4.17 (a), (b), and (c¢) shows the geometry of the barrier
problem and defines the parameters which will appear on many of the

graphs in this section. Rather than investigate the dependence on le

and kR2 separately, the following data will be plotted in terms of kR,

where R is defined as R = R1 + R2‘ Furthermore, in all of the

following cases, the distances R1 and R2 have been kept approximately
equal in value. The data plotted in Figure 4.18 (a) and (b) is for a
source located 0.2 feet above the ground (Sht) and "offset” from the

barrier by 12.0 feet (Soff), while the receiver is located 0.1 feet

27 Of course, some basic solid and analytic geometry is necessary
for computing the locations in space of the various image points and
propagation paths. Included in the computer program implementation of
the present model are several geometrical subroutines for performing
these tasks.
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22 Riht

Soff Roft

(b)

Soft Roff
(c)

Figure 4.17 The Geometry of the Barrier-on-the-Ground Problem,
showing Parameter Definitions for Graphical Data.
(a) perspective veiw. (b) side view. (c) top view.
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above the ground (Rht) and offset by 12.0 feet (Roff). The barrier
height (Bht) is 1.0 feet and the ground impedance is ZN = (1.5, 2.0)
on each side. As shall be true for most of the plots in this section,
the source-receiver ray is perpendicular to the barrier (zo = 0 and

g = 90°).

Three curves are drawn corresponding to calculated data using (i)
the "half-plane” theory (long-dashed line), (ii) the "plane wave"
theory (short-dashed line), and the (iii) "Q-term” theory (solid
line). For the half-plane computations, only the "direct” diffraction
path (Path 1 in Figure 3.4 [a]) is used, as though the ground were
absent and a semi-infinite barrier existed. The plane wave solution
accounts for all the diffraction paths, but the plane wave reflection
coefficient given by Equation (2.4) is used in place of the spherical
wave reflection cofficient Q. The data computed with the Q-term
solution is the most accurate of the three and employs the first term
in the spherical wave reflection coefficient given by Equation (2.40)
(that is, where "F" is simply replaced by "Fl" from Equation [2.150]).
In all cases, the diffraction coefficient De is that given by Equation
(3.4).

The curves show some interesting features. The Q-term shows a
broad peak in the attenuation (and insertion loss) similar to that
found in the previous ground propagation graphs. This is again due to

an "impedance effect,” as path length interference can not occur in

this kR region. For very large kR, the plane wave solution agrees

with the Q-term solution, as expected, since in this region the
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spherical wave reflection coefficient reduces to the plane wave
reflection coefficient. However, the two predictions are very
different for smaller values of kR. This can be explained as follows.
Due to the short barrier height, the ground reflection angles on

either the source or receiver sides are small (approximately 5°), and,

consequently, the plane wave reflection coefficients approach ~1.0.
Therefore, instead of showing a gain over free field as predicted by

the Q-term solution, use of the plane wave reflection coefficient

shous an attenuation of about 20 dB.
The curve generated from the half-plane theory is inaccurate over

the full range of kR considered here. The only discernible trend is

the gradual increase in attenuation, reflecting the fact that the
diffraction coefficient in Equation 3.4 decreases with increasing kR.

The insertion loss data in Figure 4.18 (b) reveals an interesting
fact. Namely, for large kR the predicted insertion loss is negative,
indicating that the field at the receiver behind the btarrier is
actually greater that it would be without the barrier.28 The
explanation for this phenomenon is simple: 1in the absence of the
barrier, the reflection angle from source to receiver is of the order
of 0.7°, and the "propagation loss” over the relatively “soft"

impedance plane would be large. The barrier essentially forces the

reflection angles higher (about 5°), causing the ground to appear

28 This is also true for low values of kR, but the attenuation is
likewise predicted to be negative there. Moreover, both the ground
propagation theory and the GTD are extremely accurate for “"large kR,"
and hence the assertion of negative insertion loss can be made
confidently.




.......

o 151

"harder,” and thereby reducing the propagation loss.
] | The numerical data in Figure 4.19 (a) and (b) is for the same
geometry as in the previous case, only here the ground impedance has
increased by a factor of 10. Immediately apparent is the fact that
' the overall attenuation is lower for the harder ground. Actually, as
R was the trend in the ground propagation studies in the previous
Ez section, the attenuation peak has shifted to higher values of kR.
5 Also apparent is that the plane wave predictions are closer to the Q-
term predictions (maximum deviation 5 dB, as opposed to 28 dB in
Figure 4.18). This is not surprising since the influence of ground
! absorption diminishes as the ground impedance increases. Again, if
the ground impedance were increased continuously, the two solutions
would eventually give identical results.

m . Unlike the case for the soft ground, the insertion loss in Figure
; 4.19 (b) is appreciable at high frequencies. This is because the loss
due to simple propagation would not be significant over this ground,
! so the "shadowing” effects of the barrier appear stronger by
comparison.

The attenuation and insertion loss curves presented next in
. Figures 4.20 and 4.21 show some preliminary effects of increasing the
barrier height (this dependence will be discussed in detail in the

next section). All parameters are the same as those in Figures 4.18

L G

and 4.19, respectively, only the barrier height is now 8.0 feet

RiAf

instead of 1.0 feet. For either impedance considered, the range of kR

for which the plane wave solution 1is in accord with the Q-term
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solution begins at a lower value for the higher barrier. That is, for
ZN = (1.5, 2.0), the 1-foot barrier dictates kR,Z 700 for agreement,
whereas the 8-foot barrier requires kR > 50. For ZN = (15.0, 20.0), a
large kR is still necessary for the l-foot barrier, but the solution;A
for the 8-foot case are very close down to kR = 10.

Comparing Figure 4.21 with Figure 4.19 shows the expected result
that the higher barrier provides the greater attenuation.
Mathematically, this is a result of the diffraction coefficient taking
;maller values as the receiver moves deeper into the shadow zone. For
soft grounds, however, a counteracting effect takes place as the
barrier height increases. The reflection angles of the source-ground-
barrier path and the barrier-ground-receiver path increase, and hence
the "strength” of the ground-reflected rays gets larger. The net
result can be seen most clearly when Figure 4.18 is compared to Figure
4.20 (attenuation or insertion loss). The attenuation is higher for
the 8~foot barrier for kR less than about 50, but the attenuation is
generally lower for kR above that. Apparently, then, the "diffraction
effect” is the primary factor at the lower values of kR, while the
"impedance effect” dominates at the higher values.

When both the source and receiver are raised above the ground to
heights of 7.2 feet and 7.1 feet, respectively, the data plotted in

Figure 4.22 result. Since the geometry chosen here defines

diffraction angles b9 and ¢ equal to those for the case in Figure
4.18, the differences between the two sets of data are due entirely to

the presence of the ground (the half-plane curve is identical for the
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two geometries). The barrier is at 8.0 feet and the ground impedance
is ZN = (1.5, 2.0). The first ;. % in the attenuation is due to the
ground impedance; it occurs at a low value of kR because the
reflection angles are now large (recall the trend noted in Section
4.1.1 that as | increased, the peak shifted to lower kR). The series
of peaks and troughs for kR > 10 are due to path length interferences
among the four ray paths considered in the Edge-Plus-Images model.
Besides the fact that the plane wave solution is valid here for kR
larger than 10, the interesting feature of the graph is that the half-
plane solution seems to predict the "average” attenuation.

The next series of graphs, Figures 4.23 - 4.24 show the effects
of having different impedances on each side of the barrier. For all
four cases, the source height 1s 0.25 feet; the receiver height is 8.0
feet; the source and receiver are 60.0 feet from the barrier; and the
barrier is 15.0 feet high. The geometry is realistic for a practical
highway noise barrier problem. First, the data for a hard (ZN =
[100.0, 150.0]) ground beneath both source and receiver is plotted in
Figure 4.23 (a) (plane wave and Q-term solutions only). For such a
high impedance, both solutions are accurate. When the ground on the
receiver side is assigned a constant impedance 22 = (2.0, 2.5), the
data in Figure 4.23 (b) result. The overall attenuation is increased
at lower frequencies as the first peak in Figure 4.23 (a) shifts to
the left; also, the solutions begin to show differences. The effect
of the impedance at high frequencies is simply to "smooth" the peaks

an troughs, as the average attenuation changes little.
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If the soft ground were located under the source instead of the
receiver, Figure 4.24 (a) would describe the resulting attenuation.
This shows several noteworthy features. First, the entire curve is
shifted up relative to the hard-ground case in Figure 4.23 (a).
Second, the first peak of attenuation centered at about kR=100 does

not shift; and third, there is no smoothing of the high-frequency

T e SRR NG AR R
“ie . ORI R PR

peaks (although the average is now higher). All of these results are

due to the fact that, unlike the receiver, the source is very close

A~ YOARSE

to the ground and the propagation is at near-grazing angles, resulting
in higher losses. Since the "incident” field at the barrier edge is

reduced by the source ground impedance layer, the entire pattern of

— AN TN
O | AL R A

receiver-side interference is shifted upward but not changed in

character. Finally, when the ground on both sides is soft, as in
Figure 4.24(b), the effects are cumulative: an overall increase in
attenuation, a shifting of the first peak, and a smoothing of the
interference peaks.

To conclude this section, a case for which the incident ray
strikes the barrier edge obliquely will be investigated. The geometry
is the same as in the previous case except that z, =100 (Figure 4.17
[b]), giving an angle B = 50°. The ground impedance is zN = (100.0,
150.0). Figure 4.25 shows the resulting attenuation, with the vesults
of Figure 4.23 (a) superimposed for comparison. Since a factor of
sinpB appears in the denominator of the diffraction coefficient given
in Equ.tion (3.4), the coefficient itself increases as the angle 8

decreases. The numerical predictions thus indicate a lower
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attenuation for the oblique incidence case. As this is not a ground-
related effect, the half-plane solution (long~dashed line) predicts
the same trend.

The geometry and impedance conditions for the plots presented in

this section are summarized in Table 4.6.

4.2.2 The Dependence on Barrier Height

Half-plane diffraction theory predicts the simple formula for
fixed source and receiver positions: the greater the barrier height,
the greater the attenuation. While this is generally true in
practice, consideration of the ground reflections and impedance
conditions greatly affects the predicted attenuation, and sometimes
leads to unexpected results.

The data plotted in Figures 4.26 and 4.27 compare the predicted
attenuation and insertion loss for a soft (ZN-[I.S, 2.0)) ground with
that for a relatively hard (ZN-[IS.O, 20.0])) ground. The source and
reciver are close to the surface (0.5 feet) and relatively far from
the barrier (60 feet), and kR is assigned a small value (5.0). Tne
barrier height ranges from 0.1 to 25 feet. Several observations can
be made. First, the low value of kR is responsible for the large
differences between the plane wave solution and the Q-term solution.
Even when the barrier is at maximum height (the ground reflection
angles are near 25°), there remains a 7 dB difference for the low-
impedance case and a 1 dB difference for the higher-impedance case.

Second, the overall effects of diffraction are minimal on the Q-term
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predictions as the insertion loss is close to zero over most of the

range of barrier height. This is simply a consequence of the very low

frequencies being considered here.
Figures 4.28 and 4.29 show data for the same geometry as above,

but here the value of kR has been increased by a factor of ten to

kR=50. The plane wave and Q-term solutions are more in accord here.
In fact, for barrier heights above 12 feet the predictions are within
E‘ 1l dB for either impedance condition. The fact that a broad peak in

‘ attenuation appears for the soft ground and not for harder ground

indicates that this is an "impedance effect”™ similar to that noticed

1 in previous ground propagation curves.
t: The two insertion loss curves in Figures 4.28 (b) and 4.29 (b)
é reveal an interesting trend that was noted in the previous section.

That is, the insertion loss is near zero for high barriers on the soft
ground, while it steadily increases with height for barriers on the
harder ground. In fact, for the soft ground, the insertion loss shows
a steady decline (Figure 4.28 [b]) for heights above 4 feet;
therefore, increasing the barrier height beyond this value would be
counterproductive (in the noise control sense).

The counteracting impedance and diffraction effects mentioned in
the previous section, are apparent in the next pair of graphs. In
Figure 4.30 (a) and (b), the source and receiver have been raised
above the ground to heights of 4 feet, but all other conditions are
the same as in the previous curves. For the case where Z_ = (1.5,

N
2.0), the attenuation stays relatively constant as the barrier height
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increases. On the other hand, each ray path in the Edge-Plus~Images
model (Figure 3.4) should experience a trend similar to that shown by
the single-ray half-plane diffraction solution plotted on the same
graph. That is, each of the four paths is attenuated more heavily as
the barrier height increases. However, the strength of each ground-
reflected path gets larger as the reflection angle increases
(approximately, from 4° to 25° over the range of barrier heights).
This effect offsets the increase in attenuation due to diffraction.
Finally, it can be seen that this phenomenon does not occur for the
harder (ZN-[IOO.O, 150.0]) ground shown in Figure 4.30 (b); the
impedance effect is not pronounced since the ground appears hard
throughout the range of reflection zngles. Thus, the attenuation
steadily increases with barrier height.

To conclude this section, two additional sets of curves are
presented in Figures 4.31 and 4.32 for large values of kR. The
parameter values are indicated on the graphs. Essentially, both plots
are for soft ground but the former has the receiver well above the
ground while the latter has it very close to the ground. The plane
wave solution 18 accurate in either case over the full range of
barrier heights. Other important observations are that path length
interference effects are present for the elevated receiver, and that
the insertion loss is negative when the source and receiver are near
the ground.

Table 4.7 presents a summary of the geometrical and impedance

conditicas for the numerical results plotted in this section.




A SO AU

171

3

A 2

t

t

[ ]

Ny

[¥]

Q

t

: 7 Sht=0.1 ft

n =7 Rht = 8.0 ft

. Soff = 60.0 ft

’ — Q-term Roff = 60.0 ft

- e Bt L2

g ——— Half-Plane v =13 L

(ay 2
30
——— Q-term
~———~ Plane Wave

I ~——— Half-Plane

n

]

®

r

t

i

-]

n

L

[~

]

*

d N kR = Lm
(b) Bz z, = (13, 1.2) |

b | T T T T

T Y Y 1ae ‘

2 4 6 8 190 12 14 18 18 20 22 24
Barrier Height (feet)

Figure 4.31 Calculated Data for (a) Attenuation and (b) Insertion
Loss as a Function of Barrier Height. Q-term, Plane
Wave, and Half-Plane Solutions. Sht=0.1, Rht=8.0,
kR=1000, and ZN = (1.3, 1.2).




172

!

: 354
' 30~
A 4 ——
t 251 —— -
t ] -
L 1 - -
{29 el
a ) P -
t ] JRe
i 15+ s
o ] - sht =05t
n pd Rht = 0.5 ft
’ 10- 7 Soff = 60.0 ft
4 / Roff = 60.0 ft
/ kR = 40
d 1 7 — Q-term ZN = (1.5, 2.0)
54/ -——- Plane Wave
] ——— Half-Plane
(a) oj T ¥ ¥ Y L T T 1 T 1 ¥ 1 Lbdd T
]
<4
_|g€
I b
n 4 —
s = { 5‘: ——— -
e 4 ——
I - — //
t _op] -
i za—1 -
. ° -
- n 1 P - g
.- ~25- e
3 L : Ve
- o v Sht = 0.5 ft
H s _3p- i Rht = 0.5 ft
! s Y Soff = 60.0 ft
: . 1 ~ Roff = 60,0 ft
.. -35] 7 — Q-term R = &0
. d 17 -—-=- Plane Wave ZN = (1.5, 2.0
- 8 ] ——— Half-Plane
3 (®)  _40]
- %] 2 4 6 8 18 12 14 16 18 20 2 24
' Barrier Height (feet)
Figure 4.32 Calculated Data for (a) Attenuation and (b) Insertion

Loss as a Function of Barrier Height. Q-term, Plane
Wave, and Half-Plane Solutions. Sht=0.5, Rht=0.5,
kR=400, and ZN = (1.5, 2.0).




(@Q)ze 'y ‘(e)ze'y (0°'z 's'1) 0°00% 0°09 .09 $°0 S 0

(D1E°Y “(BD)TE"Y (Z'1 ‘€°1) 0°000T 0°09 0°09 0°8 1°0

(Q)oey (0°0Z ‘0°ST) 0°0S 0°09 0°09 0°y 0°Y

(e)og"y (0°Z ‘S°'1) 0°0S 0°09 0°09 0y 0y

(@)6z°y “(e)6z"y (00T ‘0°ST) 0°0S 0°09 0°09 S0 S 0

(a)gz"y ‘(e)gzy (0°z ‘s°1) 0°0S 0°09 0°09 S0 S 0

(Qz'y ‘(®ez'y  (0°0Z ‘0°ST)  0°S 0°09 0°09 S0 S°0
(@)9z°% “(e)9z°¥ 0°Z ‘S°1) 0°S 0°09 0°09 S0 S0 wm
S N, o ("33) 395730 (°33) 395330 (°33) 3udten (°33) IUSTaH g
I13AT909Y 22anog ISAT909Y 32anog .

*Z°7'% uoiloag ul paijord eleq TeorasmmN a3yl 103
SUOTITpuoc) Idouepadw] pue £139W039 3y3 jo Aivummg

LY °198L




L

A 4.2.3 Dependence on Diffraction Angle ¢

The diffraction angle ¢ defined in Figure 4.17 naturally depends
i on the barrier height and the receiver position. Consequently, many
observations regarding the dependence of the field on ¢ have already

f been, or can be, made from the numerical data presented thus far.

’ However, for completeness, several cases will be presented here

showing this dependence explicitly.

i e

The numerical data predicted from the plane wave, Q-~term, and
3 half-plane-theories for a source 0.2 feet above the ground and a
barrier of height 5.0 feet are plotted in Figures 4.33 - 4.36.

Sequentially, the graphs show a small kR coupled with a low or a high

[ ground impedance, and a large kR with a low or a high ground
i impedance. In these plots, the receiver distance from the edge, RZ’
- is held constant as the angle ¢ i1s varied. Consequently, the receiver
ni revolves about the the edge point E, moving from its starting point on
:- the ground behind the barrier (¢ maximum) to its final position
- directly above the edge (¢ = 0°). At some point in this angular
Ri range, the receiver will cross the incident shadow boundary and pass
E into the illuminated region of the source. For the geometry
;i considered here, the shadow boundary from the source occurs at 69.2°,
Ei and this value (¢Sb) is marked by a vertical line on the graphs.29
t,
g 29
& The values marked on the axis for the angle % are actually

absolute values; the cylindrical coordinate system used in the

. development of the model ‘iefine the angle ¢ to be negative on the
[; receiver side of the barrier.
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The only significant differences between the plane wave and the
Q-term predictions (for this particular barrier height) are for the
low~impedance (ZN-[I.S,Z.O]), small kR (kR=5.0) case. shown in Figure
4.33. For the distances considered here (R=24.0), this value of kR
corresponds to a frequency of 37 Hz., and it is very unlikely that any
practical material (in air) would possess such a low impedance at this
low frequency. The cases with a low value of kR show a broad peak in
the attenuation or insertion loss response, whereas the cases with the
higher value of kR show the expected steady decline as the receiver
approaches the incident shadow boundary. It is interesting .to note
that for the large kR case, the simple half-plane diffraction model
overpredicts the attenuation for the hard ground and underpredicts it
for the soft ground.

Some further comments about the shadow boundary may be
appropriate here. It is well known that the presence of the Fresnel
integrals in the diffraction coefficient (Equation |3.4]), ensures
that the diffracted field is continuous across the shadow boundary.
The numerical data plotted here confirm this fact; no abrupt changes
occur in either the attenuation or insertion loss data in the vicinity
of the shadow boundary. It is also well known that the diffracted
field at the shadow boundary itself (for large kR) assumes a value
one-half that of the incident field there. This, of course, applies
to the diffraction of a single ray only. Therefore, the data in
Figures 4.35 (a) and 4.36 (a) show a 6 dB attenuation for the half-
plane predictions but a different value when the ground is taken into

account (the plane-wave or Q-term data).
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As mentioned in the description of the Edge-Plus-Images model in

-t A A

Chapter 3, the source image in the ground also defines its own shadow
boundary. That is, there is a "shadow” and an "{lluminated” region
for the reflected acoustic energy as well as for the direct energy
from the source. As the angle ¢ decreases, the receiver may also
cross this "image shadow boundary,” but, again, there should be no
discontinuity in the predicged levelg. This .8 again confirmed by the
data, since the shadow boundary for the image source occurs within a
few degrees of the incident shadow boundary shown on the graphs.

The relevant parameters for the plots in this section are

sunmarized in Table 4.8.

4.2.4 Received Spectra for a Practical Ground Cover

As noted in Section 4.1.3, the ground impedance is rarely
constant over a wide range of frequency values. Therefore, as a
practical example, the Edge-Plus—~Images prediction model has been

applied to a barrier on a ground plane characterized by the third-

octave values of impedance given in Table 4.3. The source and {

N
-
;i receiver are very close to the ground (0.25 feet), and the barrier
F

height 1is 15.0 feet.

The data plotted in Figure 4.37 are for a perfectly rigid ground.

0f course, the plane wave and Q-term solutions are identical, both

WO

indicating an attenuation that gradually increases with frequency

—rer

(diffraction coefficient decreasing with increasing kR) until a sharp

fednte N boat

peak due to ground reflection interference (path length difference) is
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reached. The insertion loss follows this trend exactly. When the

H

i
|
3
&

ground is grass—covered, the data in Figure 4.38 is generated. An
important feature here is that the plane wave solution remains valid
even for very low kR. This can be explained with reference to Table
4.3, where it can be seen that for low frequencies, the impedance is
rather high. This tends to counteract any “"low kR" differences
between the plane wave and Q-term solutions.

As has been observed in previous cases, the attenuation Qhows é
broad peak in the response for the impedance-covered ground. However,
Figure 4.38 (b) shows that the cotrésponding insertion loss drops
rapidly in this region. Again, the barrier is "preventing” the large
grazing-incidence propagation loss to take place over the soft ground.

As a final exercise, a case has been analyzed in which
significant differences do exist between the plane wave and Q-term
predictions, in spite of the high impedances at low kR values. That
is, the barrier height has been reduced (Bht=0.5 feet) to force near-
grazing incidence for the ground reflected rays. The numerical data
are plotted in Figure 4.39 (a) and (b), where the plane wave solution

18 seen to be up to 30 dB inaccurate. This configuration of source,

receiver, and barrier is certainly not representative of noise control
applicationg, but it is interesting to note the single sharp peak in

the insertion loss spectra.

Data for a variety of cases have been presented in this chapter,

mainly to illustrate some key differences between the classical plane
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wave solution to the propagation problem and the more exact spherical
wave solution. A seéondary motivation was to collect a large sample
of data for future reference. ‘In view of the many parameters
involved, this same data could provide much more information than has
been presented here. Furthermore, numerical results for either the
ground propagation solution or the Edge-Plus-Images model are

relatively easy to generate with a digital computer, and so a

particular feature or trend in any one plot could be investigated in

detail, if desired.
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CHAPTER V

&

SUMMARY AND CONCLUSIONS

sl sVt < Aty AL RER LS s
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The primary objective of the research behind this study was to
defive a more exact analytical solution to the problem of point source
propagation over an impedance plane. This goal has been met in
obtaining the asymptotic solution described in Chapter 2. A second
objective was to incorporate the new solution into a barrier model
that would account for ground reflections in addition to diffractionm.
This was also accomplished, and the so-called Edge~Plus-Images model

discussed in Chapter 3 was developed.

5.1 Summary

The mathematical problem was formulated as a boundary value

problem, in terms of the acoustic Helmholtz equation in cylindrical

coordinates (Equation [2.18]) and thé local reaction boundary
conditions (Equation [2.40]). Using Hankel Transforms, an integral
solution was obtained (Equetion [2.48]) which contained a pole and a
branch point. The pole was replaced by an equivalent integral
(Equation [2.51]), and the resulting double integral was found to
contain a term resembling the Sommerfeld representation for a point
source. The double integral thus reduced to the single integral given
by Equation (2.57).

The major part of the research effort was directed toward

evaluating the integral in Equation (2.57). Other researchers have
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arrived at similar integrals when studying this problem arn’ have
invoked such asymptotic techniques as the method of steepest descents
for its evaluation. The approach used in this study was to apply the
variable transformation given by Equation (2.60) to the integrand. In
this manner, the complicated exponential was reduced to a relatively
simple polynomial expression. The remainder of the integrand was
transformed using standard techniques, and the final real-axis
integral given in Equation (2.93) was obtained.

Since the transformed integral is still intractable due to the
square root function in the denominator, a Taylor series expansion of
the latter was sought and obtained (Equation [2.95]). The important
result here is that a general expression for the nth Taylor
coefficient was derived, making available (computationallv) as many
terms in the series as might be desired or necessary. This expansion
of the denominator ailowed the original integral in Equation (2.93) to
be written as an infinite sum of ihtegrals as in Equation (2.105).

Th” sum is an asymptotic series in the parameter “kRZ.“ ‘

The final step in the formal derivation was to perform the term~
by-term integration, that is, to evaluate the component integrals in
the asymptotic series. Each integral was resolved in terms of
parabolic cylinder functions (Equation [2.106]), which in turn were
expressed in terms of the complex complementary error function. From
the perspective of this study, the most important feature of the
parabolic cylinder functions was found to be their recursive nature.

Specifically, the recursion relations for the parabolic cylinder
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functions led directly to recursion relations for the integral terms
in the asymptotic series (Equations [2.117]) - [2.119]). Thus, the
final result of the mathematical derivation, the closed-form
asymptotic series given by Equation (2.123) or (2.128), was obtained.

The formal solution was then re-phrased in several useful forms.
The "Q-term” form in Equation (2.129), with Q defined by Equation
(2.135), lends a physical interpretation. Namely, the quantity Q
could be thought of as a "spherical wave reflection coefficient,”
since the equation in this form is analogous to that employing the
classical plane wave reflection coefficient (Equation [2.5]). The Q-
term form of solution is preferred here; for reference, it is re-
stated in Figure 5.1. The "F-term” form given by Equation (2.137),
with F defined by Equation (2.14l1), presents the solution as one
containing a "correction” term for the classical plane wave solution.
The form of the solution given in Section 2.3.5.4 shows that the
Hankel function can be extracted from the asymptotic series (other
researchers have generated approximate solutions containing the Hankel
function). Finally, a form of solution using only the first term in
the asymptotic series was presented in Section 2.3.5.5.

For the case of perpendicular incidence (siny = 1.0), an exact
solution was derived in terms of the exponential integral (Equation
[2.158]). Small- and large-argument expansions for the exponential
integral were available and are given by Equations (2.156) and
(2.157), respectively. It was found that the solution using the first
term in the latter expansion is identical to the plane wave solution

for this case.
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Figure 5.1 The Preferred Q-term Form of the Asymptotic Series
Solution. Q is the Spherical Wave Reflection
Coefficient.
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Following a brief review of the underlying diffraction concepts in

191

The next phase of the research was directed toward incorporating

the ground propagation solution into a barrier diffraction model.

Section 3.1, the principal result of this phase-~the so-called Edge-~
Plus~Images model--is described in Section 3.2. The model is
constructed using four separate half-plane diffracted ray paths. That
is, a direct-diffracted ray, a reflected-diffracted ray, a diffracted-
reflected ray, and a reflected-diffracted-reflected ray (Figure 3.4)
are combined coherently, and the ground-reflected rays are
appropriately modified by the spherical wave reflection coefficient.

A large quantity of numerical data generated from the ground
propagation solution and from the Edge-Plus-Images diffraction model

was analyzed next. The dependence of the predictions on several

important parameters was investigated in Chapter 4 in a comprehensive

series of graphs. For the ground propagation section, the dependence
on the parameter kR, the reflection angle y, and the ground impedance
ZN was studied, and for the barrier section, the influence of barrier

height and diffraction angle ¢ was studied in addition.

5.2 Conclusions

In the discussion of the numerical results from both the
propagation solution and the barrier diffraction model, many specific
observations of trends and features in the data were pointed out.

Here, several general conclusions will be drawn and discussed.
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The asymptotic series solution is very accurate. The only

noticeable difference between the data predicted from the asymptotic
series solution and the data from the numerical integration of the
exact solution occurred at very low values of kR. Deviations in this
region are expected, but the surprising fact is that these deviations
cease to exist for values of kR that are still relatively small. For
example, Figure 4.1 shows no difference between the exact and
asymptotic solutions for kR down to a value kR=3. And Figure 4.2
shows only 0.25 difference for kR=0.l. Re-examining the integrand
trends presented in Figure 2.7 (a), (b), and (c) might provide some
insight into why this is possible. For the low kR values cited here,
the integrand will show significant anplitudes outside the radius of
curvature of the Taylor series (ta)' Presumably, then, the
oscillatory nature of the integrand prevents any net contribution to
the integral for all but the smallest values of t (for which the

Taylor series is convergent).

The first term in the asymptotic series usually provides

sufficient accuracy. For the geometries and impedance conditions

considered in this study, the maximum deviation between the F-term

(that is, Fl from Equation [2.150]) solution and the full series
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solution can be seen in Figure 4.3. Here, a 3 dB deviation exists

-

over a wide range of kR. However, this is an extreme case (grazing

]
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incidence, very soft ground), and a more typical behavior (Figures 4.5
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and 4.6, for example) shows agreement with the exact solution for

Cewte gt e

.

larger kR and only one or two dB deviation for small kR. It is
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interesting to note that for extremely small kR, the solution using
only the first term in the asymptotic series may give more accuracy

“ than the solution using more terms—-—these terms are probably diverging

IRLRERYE S 5 S Uil oL

here--as can be seen in Figures 4.1 (b) or 4.3, for example.

[

The magnitude of the difference between the solution using the
first term only and that using the full series is highly dependent on

the .values of the parameters kR, ZN’ and Y. The effects of these

parameters are inter-relatéd, and it is difficult to determine which
X is the "controlling” factor. The ground impedance seems to have a

very strong influence. That is, even for relatively large kR and

IR I

large ¥, a small value for ZN will still produce deviations (for

instance, in Figure 4.8 (b]).

Cotar &4 VX

The simple plane wave solution may be accurate over a wide range

of parameter values. It is definitely inaccurate for small values of

all three parameters and definitely accurate for large values of all
three. No general rule can be stated for intermediate values, yet the

numerical data in Chapter 4 may serve as a guide.

The ground reflections must be taken into account when

considering diffraction by a barrier. For all the cases considered

- here, the half-plane prediction curve (diffraction alone) was

significantly inaccurate, even for very practical geometries and

impedance conditions. The only possible exception to this conclusion
is the case where the source and receiver are well above the ground,
for which the half-plane theory seems to predict the "average”

attenuation through the interference maxima and minima (Figure 4.25).
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The range of validity of the plane wave solution is great when a

barrier is present. This is because of the larger ground relfection

B AN

angles. The Edge-Plus~Images model zay only require the use of the

I
;
A
.
!
3
g
.

more—exact spherical wave reflection coefficient for very short
barrier heights, source and receiver near the ground, and a relatively
low ground impedance. Practical cases (in outdoor noise control, at
least) show very little difference between the solutions (Figures 4.43

and 4.44).

5.3 Suggestions for Further Research

From the mathematical standpoint, more rigor could be applied to
several points in the derivation of the ground propagation solution.
An investigation of the convergence of the asymptotic series, and a
more thorough treatment of the branch cuts and their dependence on the
angle and the admittance could be made. For the Edge-Plus-Images
model, the diffraction coefficient could be adapted to other types of
barriers, such as wedges, trapezoids, or parallel edges.

An expanded series of sensitivity tests could also be undertaken
to determine more precise relationships among the parameters. In
addition, numerical data for the absorptive barrier might be generated

and compared to the rigid barrier.

Finally, it may be interesting to apply the theoretical results j
of the present study to other fields such as underwater acoustics,

seismology, or electromagnetics, for which certain values of the

parameters kR and ZN considered "unrealistic™ in air acoustics might

te more natural.
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